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In this work we demonstrate the use of a rigorous formalism for the extraction of state-to-state transition
functions as a way to study the kinetics of protein folding in the context of a Markov chain. The approach
is illustrated by its application to two different systems: a blocked alanine dipeptide in a vacuum and the
C-terminalâ-hairpin motif from protein G in water. The first system displays some of the desired features of
the approach, whereas the second illustrates some of the challenges that must be overcome to apply the
method to more complex biomolecular systems. For both example systems, Boltzmann weighted conformations
produced by a replica exchange Monte Carlo procedure were used as starting states for kinetic trajectories.
The alanine dipeptide displays Markovian behavior in a state space defined with respect toφ-ψ torsion
angles. In contrast, Markovian behavior was not observed for theâ-hairpin in a state space where all possible
native hydrogen bonding patterns were resolved. This may be due to our choice of state definitions or sampling
limitations. Furthermore, the use of different criteria for hydrogen bonding results in the apparent observation
of different mechanisms from the same underlying data: one set of criteria indicate a zipping type of process,
but another indicates more of a collapse followed by almost simultaneous formation of a large number of
contacts. Analysis of long-lived states observed during the simulations of theâ-hairpin suggests that important
aspects of the folding process that are not captured by order parameters in common use include the formation
of non-native hydrogen bonds and the degree and nature of salt bridge formation.

1. Introduction

An understanding of the mechanisms by which proteins fold
would have wide utility in many areas, ranging from the
development of effective treatments for protein folding related
diseases to exploitation of the underlying principles of folding
to facilitate industrial nanotechnology. The study of protein
folding has three aspects: thermodynamics, kinetics, and
structure prediction. In this work we apply an approach that
was introduced in a companion paper1 for characterizing some
aspects of protein folding kinetics to two example systems: an
alanine dipeptide and the folding of a small peptide, the
C-terminalâ-hairpin motif from protein G.

The alanine dipeptide is of interest because it is an example
of a simple biomolecular system that exhibits multiple stable
conformational states. It provides a clear example of the method
we are proposing for modeling conformational kinetics.

Many believe that the first step to understanding the folding
of complex proteins is to fully characterize the folding of their
smallest structures, helices, and sheets. The hairpin motif, a
component of aâ-sheet, is one of the simplest elements of
protein structure. A particularly well-studied version of this is
the â-hairpin motif from protein G, which has become known
as the “hydrogen atom” of protein folding. It has been
extensively studied experimentally2-8 and by a variety of
theoretical and computational models.9-20 There are still open

issues about the exact folding pathway and mechanism of this
peptide. For example, do native hydrogen bonds form simul-
taneously with, before, or after the formation of a hydrophobic
core made up of the side chains of four residues, two from each
strand? Do helical structures play any role as precursors in the
folding process? Different simulation methods and force fields
have yielded different results. A recent paper21 has proposed
an additional mechanism that involves the formation and
breaking of non-native hydrogen bonds through a reptation type
of motion.

Most simulation studies have addressed the thermodynamics
and pathways of folding rather than the kinetics of the folding
process. Notable exceptions include the work of Snow,22 which
addresses the issue with large numbers of independent and short
simulations performed on a distributed computing platform, and
more recent work by Bolhuis,23 where transition path sampling
techniques were applied and folding rates very close to
experimentally observed ones were computed.

A number of trends are increasing the amount of computa-
tional resource available for protein folding simulations. These
include improved software that can efficiently exploit parallel-
ism,24 special purpose hardware to support biomolecular simula-
tion,25 and the development of new computational approaches
that can exploit parallelism across distributed computational
resources.26-29 The IBM BlueGene project,30-33 to build a
massively parallel computer to investigate biomolecular pro-
cesses such as protein folding, is expected to systematically

† Part of the special issue “Hans C. Andersen Festschrift”.
* To whom correspondence should be addressed.

6582 J. Phys. Chem. B2004,108,6582-6594

10.1021/jp037422q CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/21/2004



study a variety of peptide and small protein systems. All of
these trends will result in the production of large numbers of
peptide trajectories. Obtaining large numbers of independent
trajectories is not only a very effective way to use parallel
computing technologies, it is required for statistically meaningful
and reproducible results. Because of this move to more
comprehensive simulations, new and automatable analysis
procedures that can be applied consistently to data from
simulations of a variety of protein systems need to be developed
and validated.

We have developed an approach1 that we feel can support
the interpretation of molecular dynamics trajectories toward the
understanding of peptide folding thermodynamics and kinetics
in the context of Markov modeling. The point of the approach
is to producetransition functionsbased on observations of the
trajectories. From these transition functions one can construct
a set of transition matrices whose properties can be examined
in a way to determine whether they are appropriate to be used
in a Markov description of the process. This approach has been
described in a companion paper.1 In this paper we will apply
the methodology to describe the kinetics of two peptide systems
as an illustration of its use, potential effectiveness, and possible
limitations that must be overcome.

For the approach to work, one needs to define an appropriate
state space, and this can be a major challenge.1 Despite the
difficulties, a Markov analysis,if it can be shown to be
appropriate, has many attractive features. First, it provides a
concise way to represent information derived from many MD
trajectories. Second, each of these trajectories can, in principle,
be much shorter than the time for the protein to evolve from an
extended state to a fully folded state, and can be performed
independently using grid, distributed or parallel computing. And,
third, extrapolation of the short time behavior to long times can
provide information about folding rates and mechanisms that
can be compared with experimental observations. There are
certainly issues34 regarding such extrapolations of long time
behavior from many short simulations, and these have been
discussed in detail in the companion paper.1

The structure of this paper is as follows. In section 2 we very
briefly summarize key formulas that were derived in the
companion paper. In Section 3, we describe the alanine dipeptide
molecular system and the application of our method to the study
its kinetics. In section 4, we describe theâ-hairpin molecular
system and the application of our method to the study of its
kinetics. Section 5 is a summary of our findings and a discussion
of future directions.

2. Theory

A microstate is a specification of the coordinates and
momenta of a system. For anN-particle system, there are 3N
coordinate and 3N momentum components. For this discussion
we will represent a microstate asx, with the understanding that
this is a 6N-component vector.

We definemacrostatesas collections of microstates that have
some attribute in common. Formally, we can define a set of
indicator functions,Ω(i)(x), which allow us to classify micro-
states as to which macrostate they belong.

Of fundamental interest in this work is the computation of
transition matrices that describe the temporal evolution of the
system. The transition matrices are computed from transition
functions and time correlation functions of the indicator

functions. Formally, both of these types of functions are averages
over canonical ensembles of information that is derived from
energy conserving (microcanonical) trajectories.

Suppose we haveM Boltzmann weighted starting states from
which microcanonical trajectoriesxm(t), m) 1, ...,M, have been
computed for times fromt ) 0 to t ) Tm. From these we can
estimate the time correlation function between indicator func-
tions i and j, Cij(τ):

whereH(x) is the Hamiltonian,â ) 1/kT, k is the Boltzmann
constant andT is the temperature. Similarly, we can compute
the probability of finding the system in a microstate that is
consistent with some particular macrostatei:

The transition functions,Tij(τ), are defined and computed as
follows:

Transition functions give theconditionalprobability of finding
the system in macrostatei at one time, given that it was in
macrostatej at some timeτ earlier. We will often refer to the
argument of a correlation or transition function as thelag time,
because it refers to some time period wewait before character-
izing the system, after having seen the system to be in some
condition at time zero.

We will also be interested in computing the observed lifetime
distributions for various states. Consider a “counting” function
of x, KL

(i)(x;τ), that is unity only if microstatex is in statei at
timest ) 0, τ, 2τ, ..., (L - 1)τ, and isnot in statei at timet )
Lτ. Using the Boltzmann weighted starting states described
above we estimate〈KL

(i)(x;τ)〉 with the following:35

The thermally accessible fraction of phase space in macrostate
i that survives forL consecutive occurrences at timest ) 0, τ,

Ω(i)(x) ≡ {1 if microstatex is in macrostatei
0 if not

(1)

Cij(τ) ≡ 〈Ω(i)(x(τ)) Ω(j)(x(0))〉 (2)

)
∫dx(0) e-âH(x(0))Ω(i)(x(τ)) Ω(j)(x(0))

∫dx e-âH(x)
(3)

=
1

M
∑
m)1

M 1

Tm - τ
∫0

Tm-τ
dt Ω(i)(xm(t+τ)) Ω(j)(xm(t)) (4)

P(i) )
∫dx e-âH(x)Ω(i)(x)

∫dx e-âH(x)
(5)

=
1

M
∑
m)1

M 1

Tm - τ
∫0

Tm-τ
dt Ω(j)(xm(t)) (6)

Tij(τ) ≡
∫dx(0) e-âH(x(0)) Ω(i)(x(τ)) Ω(j)(x(0))

∫dx e-âH(x) Ω(j)(x)
(7)

) Cij(τ)/P(j) (8)

〈KL
(i)(x;τ)〉 ) 〈Ω(i)(x(0)) Ω(i)(x(τ)) Ω(i)(x(2τ)) ... (9)

× Ω(i)(x((L - 1)τ)) (1 - Ω(i)(x(Lτ)))〉 (10)

=
1

M
∑
m)1

M 1

Tm

∫0

Tmdt KL
(i)(xm(t);τ) (11)
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..., (L - 1)τ before leaving statei is given by the following:

The significance of this is that the set of〈KL
(i)〉i for different

values ofL provides a normalized distribution of lifetimes for
microstates originating in macrostatei. The mean lifetime of
microstates in macrostatei is given by

This lifetime is measured in units ofτ.
An important aspect of these equations is that they produce

lifetime distributions that are parametrically dependent on a time
interval,τ, which is related to the period between consecutive
observations.

The key results of this section are the expressions for the
Boltzmann weighted macrostate probabilities,P(i) (eq 6), cor-
relation functions,Cij(τ) (eq 4), transition functions,Tij(τ) (eq
8), and the lifetime distributions,〈KL

(i)〉i (eq 13), evaluated from
eqs 11 and 6.

The Boltzmann weighting is actually facilitated by use of a
scheme referred to in the companion paper1 as theselection
cell method. Because regions of phase space that are important
to kinetic processes, such as those near transition states, might
be very rarely observed even in long canonical molecular
dynamics or Monte Carlo simulations, it is important to be able
to enhance our sampling in these regions by selecting more
starting states from them for microcanonical simulations. This
allows for the more precise computation of transition functions
that describe evolution in to and out of macrostates near these
regions of phase space. If the starting states are chosen from a
set that represents a Boltzmann distribution, the bias introduced
by enhanced sampling near putative transition states would upset
the Boltzmann weighting. The selection cell method corrects
for this bias and still allows us to improve precision in transition
functions associated with rarely sampled regions of phase space.

3. Alanine Dipeptide

3.1. Simulation Methods. The blocked alanine dipeptide
(ACE-ALA-NME) in vacuo was simulated using the AMBER
6.036 simulation package with the parm96 parameter set.37 A
nonbonded cutoff was not used. SHAKE38 was used to constrain
all bonds to their equilibrium lengths with a tolerance of 10-5

Å. Center-of-mass momentum was removed any time velocities
were reassigned.

The simulations were carried out in two phases. In the first
phase, replica-exchange molecular dynamics,39,40simulations at
nine temperatures (evenly spaced from 300 to 700 K) were
carried out for a total of 100 ns per replica with exchange
attempts every 10 ps. Acceptance ratios for exchange moves
ranged from 68 to 86%. Velocities were randomly reassigned
from a Maxwell-Boltzmann distribution at the appropriate
temperature every 2 ps.41 At each temperature, conformations
were saved every 10 ps, yielding 10 000 starting states for
subsequent kinetic simulations. At 500 K, these 10 000 starting
states populate all five of the macrostates used for the subsequent
kinetic analysis.φ, ψ, andθ42 torsion angles were calculated
for each saved conformation.

The second phase of the calculation involved using the
Boltzmann weighted states from the replica-exchange simula-
tions at 500 K as starting states for the kinetic simulations.
Simulations from all 10 000 starting states were performed; no
attempt was made to bias the selection of starting states from
the replica-exchange data. Each kinetic simulation was 100 ps
in length and coordinates were saved every 0.5 ps.

Small isolated molecular systems exhibit periodic and quasi-
periodic dynamics that are not usually observed in the liquid
phase.43 The effects of isolation and of various degrees of
thermal coupling on the rates of conformational change have
been extensively studied. However, because the primary motiva-
tion here is to illustrate a method meant to be appropriate for
the study of relatively slow molecular conformational changes
in solvent, where periodic motion is not expected, all atomic
velocities in the molecule were reassigned from the 500 K
Boltzmann distribution every picosecond to crudely approximate
the presence of a solvent bath. Relative to a single isolated
molecule this will clearly have a profound effect on the kinetic
behavior of this molecular system. And although our kinetic
results will depend to a great degree on our choice of velocity
reassignment period, this approach serves well to illustrate the
methodology.

3.2. Analysis and Results.Our data set therefore consists
of 200 regularly spaced conformations from each of 10 000
simulations of 100 ps.φ, ψ, andθ torsion angles were calculated
for each saved conformation. Because the conformations are
Boltzmann distributed, the observed distribution ofφ-ψ angles
can be used to a construct free enegy surface in these parameters.
The main features of this surface are two basins corresponding
to conformations usually designatedC7eq, andCax. This is shown
in Figure 1.

Earlier work42 on studies of the alanine dipeptide in a vacuum
and in solution has suggested that theφ-ψ torsional degrees
of freedom may not be sufficient for characterizing the dynamics
of this molecule. That work suggests that for the system in a
vacuum, a different torsional angle must be considered, at least

〈KL
(i)(x;τ)〉i )

∫dx(0) e-âH(x(0)) Ω(i)(x(0)) KL
(i)(x(0);τ)

∫dx(0) e-âH(x(0))Ω(i)(x(0))
(12)

) 〈KL
(i)(x;τ)〉/P(i) (13)

L(i) ) ∑
L)1

∞

L〈KL
(i)〉i (14)

Figure 1. Free energy surface for the alanine dipeptide system in a
vacuum. Lines represent constant energy contours of kT at a temperature
of 500 K. The straight lines represent the boundaries of the macrostates
used in this study. Horizontal boundary lines are atψ ) 0° andψ )
-110°. The vertical boundary line is atφ ) 0°. Boundary vertexes are
at (φ ) (180°, ψ ) 0°), (φ ) 100°, ψ ) (180°), (φ ) -75°, ψ )
(180°), (φ ) -34.1666°, ψ ) -110°), and (φ ) 131.1111°, ψ )
-110°). The corners of the graph are in macrostate 1, the basin near
(φ ) -75°,ψ ) 90°) is in state 2, (φ ) -150°, ψ ) -75°) is in state
3, (φ ) -50°, ψ ) -50°) is in state 4, and the basin near (φ ) 60°,
ψ ) -75°) is in state 5.
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for transitions between theC7eq and Cax conformations. This
angle was labeledθ, the O-C-N-CR angle about a peptide
bond. When considered withφ it gave a very sharply defined
transition state ensemble for theC7eq to Cax transition region in
θ-φ space. The point was that one would not be able to
accurately describe dynamics with stochastic models that
considered projections of phase space onto theφ and ψ
dimensions. However, we have not been able to confirm this
point with our simulations. We have studied theφ-ψ free
energy surfaces our simulations generate as a function ofθ and
do not see the features that work would suggest. In fact, our
φ-ψ free energy surfaces appear symmetric about aθ value of
0° near the transition state region betweenC7eq andCax. There
are other important differences in our results. The locations of
our free energy minima do not exactly coincide with the
locations of the energy minima reported in this eariler work.
Some, if not all, of these differences might be explained by the
fact that our simulations were performed at 500 K, whereas those
of the earlier work were at 300 K. More importantly, the earlier
work employed a different parameter set for the AMBER force
field, the parm94 parameter set,44 versus our parm96 parameter
set. These force fields differ considerably in the values ofφ

andψ torsional energy parameters and could well explain the
differences we see. Consequently, we have chosen to partition
our state space using theφ-ψ torsional parameters.

On the basis of the topology of the free energy surface, five
macrostates were defined with boundaries near transition regions
in theφ-ψ parameters. States 1 and 2 span the regions of lowest
free energy, usually designatedC7eq, and state 5 spans a high
energy local minimum usually designatedCax.

Using this state space definition, each conformation of each
trajectory can be assigned a macrostate index. Consequently,
each of the trajectories is represented as a time-ordered string
of macrostates, e.g., ...,4,4,5,4,5,3,3,.... From these it is trivial
to obtain the functionsΩ(i)(t), at multiples of the sampling
period. This is represented as a sequence of ones and zeros
indicating whether the state of the trajectory is in statei or not,
where i is a macrostate index. For example,Ω(3)(t) )
...,0,0,0,0,0,1,1,....;Ω(4)(t) ) ...,1,1,0,1,0,0,0,....;Ω(5)(t) )
...,0,0,1,0,1,0,0,.... These functions are then used with eqs 4, 6,
and 11 to produce Boltzmann weighted macrostate populations,
correlation functions, and lifetime distributions.

Equilibrium populations for the five states are shown in Table
1. This table also shows the degree of consistency observed
between the populations of conformations produced from the
replica exchange simulations, those produced during the kinetic
simulations, and those implied from various transition matrices.

Boltzmann weighted lifetime distributions for each macrostate
were computed from the simulation data using eq 11. Of
fundamental interest is the degree to which these distributions
are consistent with those of a true Markov chain. We compared

each of the observed distributions with ones that would be
produced by a Markov chain having the same mean lifetime.
Because lifetime distributions depend on the time interval
between samples, this comparison was done at various temporal
resolutions. This was done by using values ofτ in eq 11 that
were different multiples,nlag, of the underlying sampling period
of 0.5 ps, which has the effect of computing lifetimes based on
data sampled at different intervals.

Representative lifetime distributions for macrostates 1 and 5
are shown in Figure 2. Along with the observed lifetime
distributions for macrostate 1 the left side of the figure shows
the distribution expected from a true Markov chain with the
same mean lifetime. Macrostates 2-4 show behavior very
similar to that of macrostate 1, suggesting that the behavior of
these states is consistent with that of a Markov chain. The right
side of the figure also shows the observed lifetime distribution
for macrostate 5. Relative to the other states, macrostate 5 was
very long-lived, with lifetimes that appear to be comparable to
or greater than the 100 ps kinetics simulations. Because the
distribution of lifetimes we observe for this state is limited to
lifetimes of 100 ps or less, at which the distribution is still
nonzero, it is inappropriate to compute a mean lifetime from
these data for the purposes of comparison with a true Markov
chain. Rather, for this state, we show an exponential fit to the
observed data (allR values greater than 0.99).

The trajectory data were also used to compute Boltzmann
weighted transition functions and matrices. For a system that
is to be characterized withM macrostates, there will beM2

correlation functions to be computed using eq 4, and, when these
are normalized by use of the macrostate probabilities computed
using eq 6, one obtains an equal number of transition functions.
These functions were evaluated at discrete times, namely
multiples of the sampling period ofτsamp) 0.5 ps, from zero
up to approximately 100τsamp, or 50 ps. These functions have a
simple characteristic look. Diagonal transition functions,Tii(t),
represent the probability of finding the system in some mac-
rostatei given that it was observed to be in the same state some
time t earlier. These generally show a smooth decline from a
value of unity. At infinite time, they would be expected to decay

TABLE 1: Fractional Populations at 500 K for the
Macrostates Used for the Alanine Dipeptide Conformationsa

Fractional Population

state repex kinetics T(0.5 ps) T(5.0 ps) T(25 ps)

1 0.5733 0.5742 0.5768 0.5774 0.5776
2 0.4087 0.4081 0.4096 0.4100 0.4092
3 0.0011 0.0009 0.0009 0.0009 0.0008
4 0.0010 0.0010 0.0010 0.0010 0.0010
5 0.0159 0.0158 0.0118 0.0108 0.0114

a The populations were produced from the replica exchange simula-
tions (RepEx), the kinetic simulations (Kinetics), and from the
eigenvector with unit eigenvalue of transition matrixes constructed with
lag times of 0.5, 5.0, and 25 ps.

Figure 2. Lifetime distributions for macrostate 1 (left three panels)
and macrostate 5 (right three panels), using three different lag times of
0.5 (top), 10 (middle), and 20 (bottom) ps, corresponding to lag times
of 1, 20, and 40 sample periods. The lifetime distributions are in terms
of lag time. The dashed lines on the left three panels show the
distribution expected for a true Markov process with the same mean
lifetime. The dashed lines on the right are exponential fits to the
observed lifetime distribution for macrostate 5.
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to the steady-state population for the state. The off-diagonal
transition functions,Tij(t), represent the probability of finding
the system in some macrostatei given that it was observed to
be in some statej some timet earlier. These generally show a
rise from zero to the steady-state population of statei.

From theM2 transition functions computed at discrete lag
times, one may construct transition matrices. There is anM ×
M transition matrix for each time at which the transition
functions were computed. For the matrix associated with any
choice of lag time,t ) nlagτsamp, each column sums to unity.
The elements of columnj describe the probability of observing
the system to be in statei, given that it was in statej at timet
earlier. Thus, the matrix can be thought of as characterizing
the evolution of the system by a particular time increment,t )
nlagτsamp. Representative transition matrices are shown in Table
2 for lag times of 0.5, 10, and 20 ps.

The transition matrices that correspond to different degrees
of observed temporal evolution have many of the properties of
a Markov transition matrix. In particular they can be diagonal-
ized and the eigenvalues can give information about the time
scales over which the system changes state. Processes that
strictly exhibit detailed balance will produce transition matrices
with real eigenvalues. In our simulations, even with a time
reversible dynamical integration algorithm, detailed balance is
not strictly observed in the space of macrostates due to the finite
duration of our simulations. Therefore, the eigenvalue spectrum
produced from our transition matrices, though real and positive
for most lag times, is occasionally complex. The real part of
the eigenvalue spectrum is shown in Figure 3 as a function of
the time index of the associated transition matrix. If the evolution
of the system can be described by a Markov process, these
curves exhibit simple exponential decay.

For a Markov chain characterized by some transition matrix,
T(t), that propagates the system by a time intervalt, the time
scale for exponential relaxation implied by any particular
eigenvalue,µ, is given byτrelax ) -t/ln µ. This function of the
eigenvalues less than unity for each of the observed transition
matrices is shown in Figure 4. If the system could be described
as a Markov chain, this function would be constant. The feature
to notice about these graphs is that the functions exhibit a rise
at short times, corresponding to non-Markovian behavior, and
then reach a plateau at longer times where they may be
consideredapproximatelyMarkovian. The upper panel in the
figure shows the behavior of the time scale associated with the
largest nonunity eigenvalue as a function of lag time. This

implies a time scale of approximately 550 ps for the slowest
relaxation process in this system. Examination of the eigenvector
associated with this slow process indicates that it involves
transitions to and from state 5. The lower panel shows the
behavior associated with the other three eigenvalues, which
correspond to the fastest processes in the system. The largest
of these shows a rise to a plateau of about 2 ps at lag times of
about 10 ps. The two fastest processes have times of 0.5 ps or
less. Processes with characteristic times that are comparable to
or less than the 0.5 ps sampling period cannot be described. A
interesting feature of these graphs is the slow and approximately
linear rise after the plateau is reached. This occurs at lag times
of about 10 ps for the fast time scales and after about 20 ps for
the slow time scales. This feature is also observed when we
analyze true Markov processes and is affected by the number
and length of simulations used in the analysis.

The central result of this section is that the analysis of the
alanine dipeptide system reveals roughly Markovian behavior
on a 10-20 ps time scale, that the slowest relaxation processes
occur on a time scale of approximately 550 ps, and that this
information can be obtained from the analysis of many
simulations that are significantly shorter than this time.

TABLE 2: Transition Matrices for the Alanine Dipeptide at
Three Different Lag Times

T(0.5 ps)) (0.8433 0.2196 0.3761 0.1279 0.0005
0.1559 0.7786 0.1094 0.7046 0.0002
0.0006 0.0002 0.4861 0.0203 0.0001
0.0002 0.0016 0.0261 0.1430 0.0003
0.0000 0.0000 0.0022 0.0042 0.9989

)
T(10 ps)) (0.5878 0.5781 0.5757 0.6076 0.0083

0.4102 0.4199 0.4159 0.3878 0.0086
0.0008 0.0009 0.0036 0.0000 0.0003
0.0010 0.0009 0.0024 0.0006 0.0003
0.0002 0.0002 0.0024 0.0040 0.9825

)
T(20 ps)) (0.5836 0.5843 0.5802 0.5595 0.0176

0.4142 0.4135 0.4106 0.4347 0.0163
0.0008 0.0009 0.0033 0.0006 0.0008
0.0010 0.0010 0.0020 0.0013 0.0003
0.0004 0.0004 0.0039 0.0039 0.9650

)
Figure 3. Four nonunity eigenvalues of the alanine dipeptide transition
matrices that correspond to various amounts of temporal evolution.

Figure 4. Time scales implied for the alanine dipeptide by eigenvalues
of the observed transition matrices corresponding to various amounts
of temporal evolution.
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4. â-Hairpin System

4.1. Simulation Methods. The replica-exchange39,40 ther-
modynamic simulations of the C-terminalâ-hairpin from protein
G in explicit water carried out by Zhou et al.16 provided the
starting point for this work. The equilibration protocol, protein
system, and force field (OPLS-AA45 with SPC46 water) are all
identical to that prior work, allowing us to use the thermody-
namic data as a basis for our kinetic simulations. The replica-
exchange data at 310 K included a total of 19 086 postequili-
bration conformations of the peptide. A sample of 287 of these
conformations were selected as the starting conformations for
microcanonical (NVE) kinetic simulations. Instead of simply
selecting conformations from the replica-exchange data with
uniform probability, which would have produced a correctly
Boltzmann weighted sample of kinetics runs by construction,
we deliberately biased the sampling toward regions of confor-
mational space that we suspected were potential transition states
or bottlenecks in the folding free energy landscape.

First, a range of order parameters were calculated for each
peptide conformation in the replica-exchange data set. These
included the properties calculated in the previous work, such
as the radius of gyration (Rg), the number of native hydrogen
bonds based on distance and angle criteria (HBcount), and the
fraction of native contacts (F), as well as a range of new order
parameters including theφ and ψ angles for each residue in
the peptide, the distances corresponding to native and non-native
salt bridges, and the van der Waals contacts between the core
hydrophobic residues (Tyr6-Phe13, Trp4-Phe13, and Trp4-
Val15). Selection criteria were then expressed in terms of these
properties, definingselection cellsin conformational space. All
of the 310 K replica-exchange conformations that fell into a
particular selection cell were recorded, and 10-20 of these
conformations were randomly selected as the starting points for
NVE runs. A total of 26 different selection cells were used,
and approximately 10-20 conformations were drawn from each
to yield a total of 287 starting states for kinetic trajectories.
The criteria used for each selection cell differ, as well as their
stringencyssome “cells” include all of phase space by construc-
tion, whereas others only had a few (20-50) representatives in
the replica-exchange data. The detailed criteria defining each
selection cell are reported in Supporting Information. Initially,
these criteria were used to bias sampling toward regions of the
2D energy landscapes (HBcount vsRg, F vs Rg) where there
appeared to be transition states or bottlenecks. Later, the
selection cells were used to sample more heavily in regions of
phase space that might be near the transition state for formation
of the hairpin turn or the first critical native hydrogen bond.
This deliberately biased sampling of the starting points for the
NVE trajectories produces a non-Boltzmann sample that was
subsequently corrected to a 310 K Boltzmann distribution
through the selection cell formalism described in the companion
paper. All reported averages, whether of kinetic or thermody-
namic properties from these simulations, are the appropriately
Boltzmann weighted averages for the ensemble of interest.

The IMPACT program package47 was used to solvate and
equilibrate each selected conformation prior to production
microcanonical (NVE) simulation. The peptide was solvated by
1800 SPC46 water molecules in a 38 Å box, along with three
sodium counterions to make the entire solvated system electri-
cally neutral. Five hundred steps of conjugate gradient mini-
mization were performed using a finite ranged potential with a
9 Å cutoff. Throughout the equilibration, a molecule-based
cutoff was used for the solvent and an atom-based cutoff for
the solute. Also, all bonds were constrained to their equilibrium

values using SHAKE38 and RATTLE48 with a tolerance of 10-7

Å. After minimization, the particle mesh Ewald (PME) tech-
nique49 was used to treat all long-ranged electrostatic interac-
tions. The solvent was equilibrated by six successive runs of
canonical (NVT) molecular dynamics of 5 ps each where the
target temperature was 60, 110, 160, 210, 260, and 310 K,
respectively. Both Andersen41 and Berendsen50 thermostats were
used. For the former, velocities were reassigned from the
appropriate Maxwell-Boltzmann distribution every 100 time
steps. A coupling constant of 0.01 ps-1 was used for the latter.
During this solvent equilibration phase all of the protein atoms
were constrained to their initial positions. The protein, ions, and
nearest 1660 water molecules were retained for the next phase
of the calculation and the excess water molecules were
discarded, though the original box dimensions were retained.
This yielded a total of 5239 atoms in each production system.
This second system was reequilibrated using an identical
molecular dynamics protocol to the one described above, except
that in this phase the solute atoms were not constrained. The
positions and velocities of the final conformation of this
equilibration phase were directly used as the initial conditions
of a production microcanonical (NVE) simulation.

Production microcanonical (NVE) simulations were run using
the Blue Matter32 program package, a parallel molecular
dynamics application specifically designed for the IBM Blue
Gene33 research prototype hardware but which can also be used
on standard commercially available computer hardware. Mi-
crocanonical NVE simulations used a velocity Verlet51 integrator
with a 1.0 fs time step. No temperature or pressure control was
used, and the total energy drift averaged over all 287 trajectories
was 0.0002 kcal mol-1 ps-1, with a standard deviation of 0.0007.
If this energy drift were to go entirely into kinetic energy, it
would correspond to a temperature drift of less than 10-2 K.

All bonds to hydrogen were constrained using SHAKE38 and
RATTLE48 with a tolerance of 10-8 Å. Electrostatic interactions
were again treated with the particle mesh Ewald49 algorithm.
An atom-based switch function was used to truncate smoothly
both the Lennard-Jones potential and the direct space term of
the Ewald potential over a range from 9 to 10 Å. The PME
reciprocal space calculation used a grid spacing of 0.5 Å with
a fourth-order interpolation. The force arising from the reciprocal
space potential was calculated analytically rather than by
interpolation. Coordinates were sampled every 0.25 ps from each
simulation. In general, each simulation was run for 0.5 ns, with
some slight variation. This yielded a total of approximately 0.12
µs of kinetic simulation, producing over 500 000 conformations
broadly distributed across the folding landscape of the hairpin
peptide.

A number of different order parameters were calculated for
each conformation from the 287 NVE simulations. For this
work, we focused on one measure of overall collapse, the radius
of gyration52 of the core residues (Rg(core)), and on four different
measures of hydrogen bond formation for the six native
hydrogen bonds. The various hydrogen bond metrics differed
in their functional form and in the strictness of their hydrogen
bond definition. The most permissive metric was based on a
simple measurement of the distance from the donor hydrogen
to the acceptor atom. Histograms of these sorts of distances
from the original replica-exchange data showed multimodal
distributions with a major peak near 2.5 Å (corresponding to
the hydrogen-bonded state) and a minimum between 5 and 6
Å. In some cases a second peak around 6.5-7.0 Å was observed,
which appeared to correspond to the presence of a bridging water
between the two groups (data not shown). Therefore, one
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hydrogen bond metric, denoted DA5.5, was based on a distance
of 5.5 Å for the donor hydrogen to the acceptor atom. A second
geometrically based measure of hydrogen bond formation,
denoted GEOM, used the common distance and angle based
criteria. For this, a hydrogen bond was counted as formed if
the donor-acceptor distance was less than 4.0 Å and the donor-
hydrogen-acceptor angle was greater than 120°. The final two
metrics both used the DSSP energetic criterion for hydrogen
bond formation,53 but with either a permissive (<-0.5 DSSP
energy units) or a restrictive (<-1.5) threshold. These were
denoted DSSP0.5 and DSSP1.5, respectively. For each of the
four definitions, the presence or absence of the six native
hydrogen bonds was determined for every peptide conformation.

4.2. Analysis and Results.States for the transition matrix
analysis were chosen in a way that we hoped would allow
extraction of information about the temporal order in which
native hydrogen bonds were formed, as well as the overall time
scale for the process of collapse and native structure formation.
States were defined with respect to two order parameters: radius
of gyration,52 Rg(core), and the hydrogen bond status (i.e., either
hydrogen bonded or not) of each of the six residue pairs that
are hydrogen bonded in the fully folded conformation (Figure
5). This status can be indicated by an ordered string of six
characters, each of which is either a 1 if the residue pair is
hydrogen bonded, or a zero if the residue pair is not. The first
character of the string represents the status of the residue pair
closest to the termini of the strand; the last character represents
the status of the pair closest to the turn of the native state. Thus,
000000 represents the set of conformations with no native
hydrogen bonds formed, 111111 represents the set of conforma-
tions with all six formed, and 000001 represents the set of
conformations with a single native hydrogen bond formed, the
one closest to the turn. This characterization results in 26 ) 64
possible hydrogen bond states. In our data set, the most
populated states were those with a hydrogen bond status of
000000, 000001, or 000010. These states were further subdi-
vided on the basis ofRg(core) values. The conformations with
hydrogen bond status 000000 were divided into four sets:
Rg(core)e 5.25, 5.25< Rg(core)e 7.5, 7.5< Rg(core)e 9.5,

andRg(core)> 9.5, denoted S (small), M (medium), L (large),
and E (extended), repectively. Those with hydrogen bond status
000001 and 000010 were each further divided into two sets:
Rg(core)e 5.25 andRg(core)> 5.25, denoted S (small) and M
(medium), respectively. These boundaries are near minima in
the Rg(core) probability distributions observed for each of the
three hydrogen bond patterns for each of the four different
definitions of hydrogen bond status. This resulted in 69 states.
However, from observation of trajectories, it was noted that for
states with any hydrogen bonding, the bond nearest the turn
was transient, frequently forming and breaking with very short
lifetimes. This was true even for conformations that were
otherwise fully hydrogen bonded. Therefore, except for those
with hydrogen bond patterns 000000, 000001, 000010 and
000011, all other hydrogen bond states were combined in pairs
without regard to the status of the hydrogen bond near the turn.
This means, for example, that a new state was formed from
including all conformations that would be characterized as either
000110 or 000111 into a state denoted 00011X, X meaning that
hydrogen bond can be either formed or not. This combining
process reduced the number of states by 30, from 69 to 39.

Next, each conformation from each trajectory was classified
with respect to these 39 states. This was done using each of the
four definitions for the existence of a native hydrogen bond.
After this classification it was noted that there were several states
with extremely low populations, e.g., less than 200 observations
out of over half a million conformations. The nature and number
of these states depended on the choice of hydrogen bond
definition. It was felt that for transitions involving these
infrequently observed states, insufficient data existed for a very
precise characterization of their associated transition prob-
abilities, so these states were considered for lumping with other
states. The decision to lump or not, and with which other state
the lumping should be done, involved examination of trajectory
information to see what other state(s) occurred immediately
before and after the infrequently observed states. These are the
states that are kinetically accessible in a short period of time (a
single sampling period) to the infrequently observed one. In
most cases there was a single such state, and it differed from
the infrequent state by the addition or removal of one hydrogen
bond. These two macrostates were merged, meaning that the
macrostate spanning the less frequently observed region of phase
space was deleted and the more frequently observed macrostate
was redefined as spanning both regions of phase space. For
example, in schemes DSSP0.5 and GEOM, the very rare states
11010X and 11100X were both kinetically accessible to the
more prevalent state 11110X, so the these three states were
merged into a single macrostate that would be indicated as
11110X. In some cases, however, there were multiple states
that were kinetically accessible to a rare one, and the infre-
quently observed state appeared to be serving as a transitioning
state between two or more states with larger populations. In
these cases, the merge was not done. This process resulted in
different sets of states for each of the four choices of hydrogen
bond definition. Following this procedure and using the DA5.5
hydrogen bonding crition resulted in 22 states, using the GEOM
criterion resulted in 25 states, and using the DSSP0.5 and
DSSP1.5 criteria resulted in 25 and 35 states, respectively. This
process produced the macrostates used for the remainder of the
analysis. These states are described in the Supporting Informa-
tion.

Using one of the hydrogen bond definition criteria, the
resulting hydrogen bond pattern,Rg(core), and the lumping
process, each conformation of each trajectory can be assigned

Figure 5. Representation of the nativelike conformation of the
â-hairpin. Hydrogen bonds are indicated as cylinders with stripes, the
diameter of the cylinder giving an indication of the strength of the
hydrogen bond. Counterions are represented as spheres. In this work
we are primarily concerned with the rightmost six native hydrogen
bonds in the figure. In our notation, the hydrogen bonding pattern for
this conformation would be indicated as 111111. The leftmost hydrogen
bond in the figure is weak and transient because of the orientation of
residues in the turn.
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a macrostate index. As previously described, the trajectories are
then represented as time ordered lists of states. Then using eqs
4, 6, and 11, along with the selection cell reweighting scheme
to produce Boltzmann weighted macrostate populations, one can
compute correlation functions and lifetime distributions.

The first results of this process are shown in Table 3. There
is a high degree of consistency among the four macrostate
classification schemes in terms of the nature of the most
populated macrostates. Also shown in this table are the
Boltzmann probabilities for each macrostate and the fraction
of the total number of observed configurations that were
consistent with the macrostate definition. The fact that these
two values are different is a reflection of the fact that the starting
conformations were not Boltzmann weighted.

Boltzmann weighted lifetime distributions for each macrostate
and for each macrostate definition scheme were computed from
the simulation data using a version of eq 11 that takes account
the bias introduced by the selection cell sampling procedure.1

We compared each of the observed distributions with ones that
would be produced by a Markov chain having the same mean
lifetime. As described above, this comparison was done at
various temporal resolutions by using values ofτ in eq 11 that
were different multiples,nlag, of the underlying sampling period
of 0.25 ps.

Representative lifetime results are shown in Figure 6, where
the GEOM macrostate definiton scheme was used. This shows

lifetime distributions for two macrostates: macrostate 1
(000000E), representing states with a large radius of gyration
and no native hydrogen bonds; and macrostate number 15
(00111X), representing states with three or four native hydrogens
bond formed near the turn of the hairpin. Macrostate 1 is a low
probability state in this scheme, and has a relatively long mean
lifetime. Macrostate 15 is a high probability state (11%) and
has a relatively short mean lifetime. The figure shows the
distributions for each of these two macrostates computed with
three different temporal resolutions corresponding tonlag ) 10,
50, 200 of our fundamental sampling period. For comparison,
also shown on each histogram in this figure is the lifetime
distribution that would be expected from a true Markov chain
having the same mean lifetime as the observed data. The
distribution for macrostate 1 is seen to have a qualitatively
different shape than that of a Markov chain. This is true at all
three temporal resolutions. The distribution for macrostate 15,
on the other hand, shows non-Markov characteristics at the
shorter time scales but is in good agreement with the Markov
distribution at the longer time scale. Although to different
degrees, for both macrostates the observed lifetime distributions
appear more like the Markov distributions at longer time scales.
The differences are systematic. Compared with the Markovian
distributions, the observed distributions always have enhanced
probabilities for very short and very long lifetimes. In general,

TABLE 3: Macrostates Developed for Each of the Hydrogen Bond Definitions Used (Denoted DSSP0.5, DSSP1.5, DA5.5, and
GEOM) a

DSSP0.5 DSSP1.5 DA5.5 GEOM

desc Boltz(obs) desc Boltz(obs) desc Boltz(obs) desc Boltz(obs)

1 000000E 0.03(0.14) 000000E 0.03(0.14) 000000E 0.03(0.14) 000000E 0.03(0.14)
2 000000L 0.02(0.14) 000000L 0.02(0.14) 000000L 0.02(0.13) 000000L 0.02(0.14)
3 000000M 0.04(0.14) 000000M 0.05(0.18) 000000M 0.04(0.10) 000000M 0.04(0.15)
4 000000S 0.00(0.02) 000000S 0.01(0.04) 000000S 0.00(0.00) 000000S 0.00(0.02)
5 000001M 0.00(0.02) 000001M 0.00(0.01) 000001M 0.00(0.01) 000001M 0.00(0.02)
6 000001S 0.00(0.01) 000001S 0.00(0.01) 000011 0.01(0.07) 000001S 0.00(0.01)
7 000010M 0.00(0.02) 000010M 0.01(0.05) 000010M 0.00(0.01) 000010M 0.00(0.01)
8 000010S 0.00(0.01) 000010S 0.00(0.01) 00010X 0.00(0.00) 000010S 0.00(0.01)
9 000011 0.00(0.07) 000011 0.01(0.04) 00011X 0.04(0.08) 000011 0.01(0.07)

10 00010X 0.00(0.00) 00010X 0.03(0.02) 001000 0.00(0.00) 00010X 0.00(0.00)
11 00011X 0.11(0.09) 00011X 0.13(0.09) 00101X 0.00(0.00) 00011X 0.12(0.10)
12 00100X 0.00(0.00) 00100X 0.00(0.00) 00110X 0.00(0.00) 001000 0.00(0.00)
13 00101X 0.00(0.00) 00101X 0.00(0.00) 00111X 0.06(0.12) 00101X 0.00(0.00)
14 00110X 0.00(0.01) 00110X 0.01(0.02) 01000X 0.00(0.00) 00110X 0.00(0.01)
15 00111X 0.11(0.10) 00111X 0.10(0.06) 010111 0.01(0.00) 00111X 0.11(0.09)
16 0100XX 0.00(0.00) 01X00X 0.00(0.00) 011100 0.00(0.00) 010011 0.00(0.00)
17 01111X 0.16(0.10) 01001X 0.00(0.00) 01111X 0.15(0.11) 011X0X 0.00(0.01)
18 01011X 0.00(0.00) 01010X 0.00(0.00) 100000 0.00(0.00) 01011X 0.00(0.00)
19 011X 0.00(0.00) 01011X 0.01(0.00) 100111 0.02(0.00) 01101X 0.00(0.00)
20 01101X 0.00(0.00) 01101X 0.01(0.00) 101111 0.00(0.00) 01111X 0.17(0.10)
21 10001X 0.00(0.00) 01110X 0.01(0.01) 110111 0.03(0.01) 1000XX 0.00(0.00)
22 10011X 0.00(0.00) 01111X 0.18(0.08) 11111X 0.55(0.18) 111X1X 0.42(0.11)
23 11110X 0.00(0.00) 1000XX 0.00(0.00) 11110X 0.00(0.01)
24 10111X 0.00(0.00) 10X10X 0.00(0.00) 10111X 0.01(0.00)
25 11XX1X 0.45(0.12) 10011X 0.00(0.00) 11011X 0.00(0.00)
26 1X100X 0.00(0.00)
27 10101X 0.00(0.00)
28 10111X 0.02(0.01)
29 11000X 0.00(0.00)
30 11001X 0.00(0.00)
31 11010X 0.00(0.00)
32 11011X 0.03(0.01)
33 11101X 0.02(0.00)
34 11110X 0.01(0.01)
35 11111X 0.27(0.07)

a The columns headed “desc” give a shorthand description of the dominant types of conformations that make up each macrostate. The notation
gives the hydrogen bond pattern, the characters “E” (extended), “L” (large), “M” (medium), and “S” (small) refer to different ranges ofRg(core).
The columns headed “Boltz(obs)” give the Boltzmann probabilities for finding each macrostate and the fraction of the total number of observed
conformations that were consistent with the macrostate definition.
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these trends are seen for all macrostates and for each of the
four macrostate definition schemes.

The trajectory data were also used to compute Boltzmann
weighted transition functions and matrices evaluated at discrete
times, namely multiples of the sampling period ofτsamp) 0.25
ps, from zero up to approximately 400τsamp, or 100 ps. From
the transition functions computed at discrete lag times, one may
construct transition matrices. For the hairpin analyses, a
particularly important feature of these transition matrices is that
they are very nearly blocked into two submatrices, one of which
indicates transitions among macrostates with no hydrogen
bonding, and the other of which indicates transitons among
macrostates with at least one hydrogen bond. The small matrix
elements that connect these sets of states largely determine the
slowest mode of relaxation, which corresponds to transitions
from macrostates with no hydrogen bonds, to those with at least
one.

The real part of the eigenvalue spectrum of the transition
matrices, as a function of the time index of the associated
transition matrix, is shown in Figure 7. If the evolution of the
system could be described by a Markov process, these curves
would exhibit simple exponential decay. The fact that this is
not observed is another indication of non-Markovian behavior.

The time scale for exponential relaxation for a Markov
process implied by any particular eigenvalue,µ, is given by
τrelax ) -t/ln µ. This function of the largest eigenvalue less
than unity for each of the observed transition matrices is shown
in Figure 8. If the system could be described as a Markov chain,
this function would be constant, and clearly this is not the case.
In the figure, two curves are shown for each macrostate
definition scheme. One curve (solid) was produced using the
trajectory data as generated. The other one (dashed) shows the
effect of including both the forward and time-reversed version
of each trajectory in the analysis. This procedure has the effect
of enforcingdetailed balance and results in all real eigenvalues
for all of the observed transition matrices. One can see from
the figure that this procedure affects the time scales implied by
the observed transition matrices by factors of as much as three.
Even more surprising, however, is the large difference in time
scales implied by the use of different macrostate defintion
schemes.

There are several indications that the observed transition
matrices do not possess the properties one would expect of
Markov transition matrices. Therefore, they should not be used
as Markov transition matrices, especially to predict extremely
long time behavior. However, in Figure 9 we show the result
of such a process, anyway. Here, we have taken a particular
transition matrix, constructed from transition functions evaluated
at a time oft ) 200τsamp) 50 ps, and repeatedly applied it to
“evolve” a state started with probability only in macrostate 1.
This is the macrostate with no native hydrogen bonds and a
large radius of gyration in all four of the macrostate definition
schemes. The initial state was propagated by 400 applications
of the 50 ps matrix, implying an evolution of 20 ns. In each
case we see an early and rapid reduction of the population of
macrostate 1 (000000E), simultaneous with early and rapid
growth in the populations first of macrostate 2 (000000L) then
of macrostate 3 (000000M). This phase represents a rapid
collapse to what might be called a molten globule state. In the
DSSP0.5, DSSP1.5, and GEOM schemes, there appears to be
an early buildup of probability in 00011X states before

Figure 6. Lifetime distributions observed for two macrostates using the GEOM macrostate definition scheme. The three histograms on the left
represent lifetime distributions for macrostate 1 (000000E) at three different temporal resolutions of (top, A) 10τsamp, or 2.5 ps; (middle, B) 50τsamp,
or 12.5 ps; and (bottom, C) 200τsamp, or 50 ps. The three histograms on the right (D, E, F) represent lifetime distributions for macrostate 15
(00111X) at the same three temporal resolutions. Shown on each histogram along with the observed (solid line) Boltzmann weighted distribution
is the distribution with the same mean lifetime that one would expect if the process were truly Markovian (dashed line).

Figure 7. Largest eigenvalues of the transition matrices that correspond
to various amounts of temporal evolution. The eigenvalues for
macrostate definition scheme DSSP0.5 (A), DSSP1.5 (B), DA5.5 (C),
and GEOM (D).
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probability grows for states with more native hydrogen bonds.
This implies azipping process, starting from the turn region.
The behavior exhibited by the DA5.5 scheme is very different
in that formation of the fully folded states does not seem to
require a buildup of population in states with fewer numbers
of native hydrogen bonds. Though not visible in the figure, there

is a buildup of population in state 4 (000000S) that precedes
the formation of the fully folded state in this scheme. The DA5.5
scheme uses a very permissive criterion for hydrogen bond
formation where a native hydrogen bond is considered to be
formed if the donor-hydrogen-acceptor pair are close enough
that a water molecule probably cannot fit between them. In this
scheme, it appears that native states arise from a fully collapsed
state (000000S).

It is interesting that the folding process implied by the DA5.5
scheme seems to happen on a much longer time scale than that
implied by the other schemes, because one would expect a more
permissive hydrogen bond criteria to result in the appearance
of faster and earlier folding. We feel that this may actually point
to a problem with the other schemes. We believe that the more
restrictive definitions of hydrogen bonding used in the other
schemes results in the classification into the same macrostate
of conformations that are very dissimilar. For example, a
restrictive definition could place conformations where all the
native hydrogen bonds are unformed but close to being formed
into the same macrostate as conformations where all native
hydrogen bonds are far from being formed. Then, evolution of
the system between microstates that are structurally nearly native
results in the appearance of transitions between the manifolds
of states that are nearly native and those that have few or no
native hydrogen bonds. The result is the production of transition
matrix elements that imply artificially strong coupling between
the macrostates and, thereby, unrealistically faster equilibration
and relaxation times in the system. A more permissive definition
of hydrogen bonding is less likely to lump into the same
macrostate these kinds of kinetically distinct microstate. Inap-
propriate lumping of states is probably one cause of the non-
Markovian behavior, as well as the fact that the folding time
scales we predict from our simulations are 2-3 orders of
magnitude faster than the 6µs observed in experiments.4,5

Among the 287 trajectories sampled, many appeared to be
stuck in the same macrostate for very long periods of time. In
fact, if we restrict our attention to the longer trajectories of the
set (the 227 that were at least 475 ps), there were 17 trajectories
that were in a single macrostate at least 95% of the time
according toall four of the macrostate definition schemes. The
macrostates involved were always one of the three most
extended states with no native hydrogen bonds. There were also
several examples of trajectories that spent greater than 95% of
the time in states with nearly a full complement of native
hydrogen bonds, according to at least one of the macrostate
definition schemes. In general, however, most trajectories
explored a variety of macrostates. Because of their relatively
short length, however, none was observed to evolve from fully
extended states with no native hydrogen bonds to a fully folded
state.

The trajectories where the system appears to be stuck in the
same macrostate can be very useful. For our kind of analysis to
work, the macrostates should be defined in a way that partitions
phase space into regions that are kinetically homogeneous.
Therefore, if we see situations where, in some trajectories, a
macrostate appears to have a short lifetime, and, in others it
appears to have extremely long lifetimes, there has apparently
been an inappropriate lumping of conformations into the same
macrostate. This indicates that the macrostate should be divided
up into two or more smaller macrostates. Comparison of
conformations from trajectories that are stuck with those from
trajectories that are not can lead to the identification of new
phenomenology that should be taken into account to produce a
better macrostate definition scheme.

Figure 8. Times implied by largest eigenvalues of the observed
transition matrices for the hairpin corresponding to various amounts
of temporal evolution for macrostate definition schemes DSSP0.5 (A),
DSSP1.5 (B), DA5.5 (C), and GEOM (D). For each macrostate
definition scheme, there are two curves. The solid line represents the
time scales predicted from using each trajectory once; the dashed line
represents the same analysis using each trajectorytwice, once forward,
and once time-reversed.

Figure 9. 20 ns evolution of the probability density implied by the
use of the observed transition matrix corresponding to a lag time 50
ps. The initial probability density corresponded to all population in
state 1 (000000E), the macrostate with no native hydrogen bonds and
a large radius of gyration. This has been done for each of the four
macrostate definition schemes: DSSP0.5 (A), DSSP1.5 (B), DA5.5
(C), and GEOM (D). In each panel, macrostate 1 (000000E), the
monotonically decaying curve, is represented by the dotted line, state
2 (000000L) is represented by the line of short dashes, state 3
(000000M) is represented by the line of longer dashes, and the fully
folded state is represented by the darker solid line. The states
characterized as 00011X are represented by lines with X symbols [state
11 in schemes DSSP0.5 (A), DSSP1.5 (B) and GEOM (D)]. The states
characterized as 00111X are represented by lines with cross symbols
[state 15 in schemes DSSP0.5 (A), DSSP1.5 (B) and GEOM (D)]. The
states characterized as 01111X are represented by lines with circle
symbols [state 17 in scheme DSSP0.5 (A), state 22 in scheme DSSP1.5
(B) and state 20 in scheme GEOM (D)]. State 4 (000000S) is observed
to play a role in the GEOM scheme and is represented by lines with
triangle symbols.
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Figure 10 shows some conformations taken from stuck
trajectories. Panel A shows a conformation with three well-
formed native hydrogen bonds; by most of the schemes this
conformation would be considered to be in macrostate 000111.
However, there are also four non-native hydrogen bonds that

may be stabilizing this structure in a metastable conformation.
The non-native bonds correspond to a misregistration of one
strand of the hairpin relative to the other. There is also a strongly
associated ion with this conformation that could be affecting
the temporal behavior. Panel B shows a similar conformation

Figure 10. Selected conformations taken from trajectories in which the hairpin system stayed in the same macrostate for over 95% of the time.
Panel A shows a conformation with four “misregistered” non-native hydrogen bonds that may be stabilizing this structure as well as a strongly
associated ion. Panel B shows a conformation with three non-native hydrogen bonds, and with the terminal ends of the peptide splayed in a manner
that might inhibit evolution. The cylinder in this panel near the turn of the hairpin indicates a properly formed salt bridge. Panel C shows a
conformation with a non-native hydrogen bond near the turn. It is also splayed and has ions associated with residues near each of the termini. Panel
D shows a conformation where the turn is misformed, making it impossible to form native hydrogen bonds. The open “loop” structure is stabilized
by side-chain to backbone or inter-side chain contacts. Panel E shows a conformation where the C-terminal leg of the hairpin has folded back on
itself in a tight turn formed by Trp and Glu residues.
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with three well-formed native hydrogen bonds, implying as-
signment to macrostate 000111, and three non-native hydrogen
bonds. Additionally, the terminal ends of the peptide are splayed
in a manner that might inhibit evolution of the conformation to
other macrostates. The cylinder in this panel near the turn of
the hairpin indicates a properly formed salt bridge. Panel C
shows a conformation with three well-formed hydrogen bonds,
with assignment to macrostate 000111, and a non-native
hydrogen bond near the turn. This conformation is also splayed
and has ions associated with residues near each of the termini.
Panel D shows a conformation where the turn is misformed,
making it impossible to form native hydrogen bonds. The open
“loop” structure is stabilized by side-chain to backbone or inter-
side chain contacts. Other features evident in this panel include
Glu42 in contact with an ion (lower right), a persistent feature
in the trajectory from which this configuration was taken. This
conformation was assigned to macrostate 000000M by all four
hydrogen bond definition schemes. Panel E shows a conforma-
tion where the C-terminal leg of the hairpin has folded back on
itself in a tight turn formed by Trp and Glu residues. This turn
structure persists for the entire 500 ps of the trajectory, but does
not appear to be stabilized by any specific hydrogen bonding,
hydrophobic, or ionic interactions. This conformation was
assigned to macrostate 000000E by all four hydrogen bond
definition schemes.

From these images one can infer the potential importance of
non-native hydrogen bond formation, native and non-native side
chain salt bridge formation, ion association, and conformations
with splayed or twisted strands. We note that the work recently
reported by Wei et al.,21 also suggests the importance of non-
native hydrogen bonds in the folding process. Order parameters
used to construct macrostates to describe peptide folding rarely
provide for these possibilities in the process. Therefore, when
these kinds of conformations arise, they are lumped in with those
that have very different temporal behavior. This seriously
hinders any ability to understand the process in terms of Markov
chains. However, it suggests that if these aspects of the process
are addressed by inclusion of new criteria in the macrostate
definitions, a Markov model of the process might be feasible.

5. Conclusions and Discussion

We have employed a rigorously derived set of formulas for
the computation of transition probabilities from molecular
dynamics data. The formulation uses Boltzmann weighted
conformations as starting states for kinetic simulations and takes
into account the need for enhanced sampling around parts of
phase space that might be involved in transition states through
the use of a reweighting scheme that restores the Boltzmann
weighting. An important aspect of the formulation is that no
prior assumption of Markovian behavior is assumed and so the
degree to which the observations are Markovian can be assessed
in an unbiased way.

We have applied this formalism to two example systems, an
alanine dipeptide in a vacuum and theâ-hairpin from Protein
G in water. The alanine analysis used macrostates defined with
respect toφ-ψ torsion angles, with boundaries obtained from
examination of the free energy surface. It exhibits Markovian
behavior on time scales longer than about 10-20 ps. The slowest
relaxation processes in this system appear to be on the order of
550 ps, but the exact values for these times may be affected by
the periodic velocity reassignments that were used to mimic
the effect of a solvent. Regardless, these results show that our
approach can be used to study the kinetics of conformational
change in peptides, given sufficient sampling and adequate
macrostate definitions.

The hairpin analysis used a novel macrostate space definition
that resolves not only the number, but the pattern of native
hydrogen bonds. We have tested four different criteria for
hydrogen bonding. However, our analyses did not reveal
Markovian behavior regardless of the hydrogen bond definition
used. There could be many reasons for this. First, it is possible
that the replica exchange simulations on which this study were
based were insufficiently converged for us to deduce kinetics.
The replica exchange simulations on the hairpin were relatively
short and all replicas were started from a folded state. The
resulting conformations could therefore be biased toward folded
and slightly unfolded states. Our ensemble of starting states
could therefore be missing conformations that are essential for
characterizing the process of folding. This is a possible
explanation for the absence of trajectories that cross from states
with no native hydrogen bonds to states with at least one.

Second, our particular choices for the macrostate definitions
may have involved inappropriate lumping of kinetically disparate
states into the same macrostate. This has been discussed at length
and it is clear how inappropriately lumped states can lead to
the appearance of artificially fast kinetics as well as non-
Markovian behavior. The examination of “stuck” trajectories
provides valuable guidance in the formulation of better mac-
rostates. It is clear from our examination of these trajectories
that states may have to be defined that reflect not only the
presence of native hydrogen bonds, but the presence of non-
native hydrogen bonds, properly formed and improperly formed
salt bridges, ion contacts, etc.

Third, in this demonstration of the method, we have per-
formed rather short trajectories (approximately 0.5 ns). Recent
experiments54 on the dynamics of unfolded peptide chains have
provided information on the end-to-end chain contact time as a
function of chain length. These suggest that for peptides of the
length of theâ-hairpin it might be more appropriate to perform
kinetic simulations of at least 5-10 ns.

We believe that better macrostate definition schemes and
analyses done with more, better sampled starting states and
longer simulations may show the emergence of Markovian
behavior.

Because Markovian behavior is not strictly obeyed in our
analysis, it is not appropriate to predict folding rates from the
transition matrices we have computed. However, we can make
a few qualitative statements about theâ-hairpin folding process.
Because few of our trajectories showed a significant degree of
crossing between states with no native hydrogen bonds and those
with at least one hydrogen bond, at the temperature of our study
(310 K), there may be a large kinetic barrier between those two
manifolds of states. This manifests itself in a transition matrix
that is nearly blocked, with small off-diagonal elements con-
necting the blocks. These small off-diagonal elements determine
the transfer of probability between these two manifolds and,
thereby, the time scale for the formation of the native state.

It is notable that the time scales for folding implied by the
various macrostate definition schemes (Figures 8 and 9) are
much faster than what is observed experimentally. We feel this
should not be of much concern, because our analysis clearly
indicates that we have not observed behavior consistent with a
Markov process, which is a prerequisite for predicting long time
behavior. There are many possible explanations for this. In
particular, slower processes would emerge with longer simula-
tions, and it is not until we have observed the stability of
observables with respect to simulation time that we would feel
confident in predicting experimental folding rates. Longer and
more simulations would be needed, for example, to better
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characterize the transitions between the manifolds of states with
and without hydrogen bonds. And, in agreement with the
concerns of Fersht,34 the process of characterizing these transi-
tions may reveal other modes of behavior and other important
folding pathways.

The mechanism of folding appears to depend on the criterion
chosen for the existence of a hydrogen bond. Some hydrogen
bond definitions imply that the pathway to folding from an
unfolded state involves the formation of a native hydrogen bond
near the turn of the hairpin, followed by a rapid zipping process.
In this view, the time for folding is largely determined by the
time it takes for the formation of the bond near the turn. On the
other hand, a different hydrogen bond definition implies that
the process involves a collapse, and that many hydrogen bonds
then seem to form almost simultaneously, perhaps with the
expulsion of water. Sensitivity of results with respect to
hydrogen bond definition may explain some of the diversity of
â-hairpin folding mechanisms proposed in the literature.

Work is ongoing to address the issue of better macrostate
definitions, such as the formulation of an automated process
for order parameter selection and binning. We are looking for
alternative assessment schemes to measure the degree to which
Markovian behavior is observed, such as examination of the
history dependence of the transition probabilities. We also wish
to address the effect of using different force fields, and the
sensitivity of our results with respect to the number and length
of the dynamical simulations.55 We also need to be careful that
our analysis is based on an ensemble of uncorrelated and truly
Boltzmann weighted starting states, from replica exchange
simulations that have adequate sampling of phase space.

Properly applied, this approach has the potential to properly
elucidate the kinetics of protein folding from multiple indepen-
dent trajectories. This requires appropriate Boltzmann weighted
coverage of phase space as well as high quality energy
conserving trajectories. We are looking forward to the applica-
tion of these techniques to a variety of peptide and small protein
systems.
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