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We describe the design of a dual-issue single-instruction, multiple-
data-like (SIMD-like) extension of the IBM PowerPCt 440
floating-point unit (FPU) core and the compiler and algorithmic
techniques to exploit it. This extended FPU is targeted at both the
IBM massively parallel Blue Genet/L machine and the more
pervasive embedded platforms. We discuss the hardware and
software codesign that was essential in order to fully realize the
performance benefits of the FPU when constrained by the memory
bandwidth limitations and high penalties for misaligned data access
imposed by the memory hierarchy on a Blue Gene/L node. Using
both hand-optimized and compiled code for key linear algebraic
kernels, we validate the architectural design choices, evaluate the
success of the compiler, and quantify the effectiveness of the novel
algorithm design techniques. Our measurements show that the
combination of algorithm, compiler, and hardware delivers a
significant fraction of peak floating-point performance for
compute-bound-kernels, such as matrix multiplication, and delivers
a significant fraction of peak memory bandwidth for memory-
bound kernels, such as DAXPY, while remaining largely insensitive
to data alignment.

Introduction

Blue Gene*/L [1] is a massively parallel computer system

under development at the IBM Thomas J. Watson

Research Center and the IBM Engineering and

Technology Services Group in Rochester, Minnesota, in

collaboration with the Lawrence Livermore National

Laboratory. The Blue Gene/L program targets a

machine with 65,536 dual-processor nodes and a peak

performance of 360 trillion floating-point operations per

second (360 Tflops). It is expected to deliver previously

unattainable levels of performance for a wide range of

scientific applications, such as molecular dynamics,

turbulence modeling, and three-dimensional dislocation

dynamics.

This paper describes a hardware and software codesign

to enhance the floating-point performance of a Blue

Gene/L node, based on extensions to the IBM PowerPC*

440 (PPC440) floating-point unit (FPU) core [2], a high-

performance dual-issue FPU. We recognized from the

beginning that actual performance relies heavily on the

optimization of software for the platform. Feedback from

the software teams was instrumental in identifying and

refining new extensions to the PowerPC instruction set

to speed up target applications without adding excessive

complexity. On the hardware side, we needed to double

the raw performance of our FPU while still being able to

connect it to the preexisting auxiliary processor unit

(APU) interface of the PPC440 G5 central processing unit

(CPU) core [3] under the constraints of working with the

dual-issue nature of the CPU and keeping the floating-

point pipes fed with data and instructions. On the

software side, we needed tight floating-point kernels

optimized for the latency and throughput of the FPU

and a compiler that could produce code optimized for

this unit.

This paper reports four major contributions: First, a

minor modification of the PPC440 FPU core design

produces a single-instruction, multiple-data-like (SIMD-
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like) FPU with novel features at both the instruction-

set architecture (ISA) and microarchitecture levels and

doubles its performance. Second, the compiler code-

generation algorithm incorporates several nontrivial

extensions of the Larsen and Amarasinghe superword-

level parallelism (SLP) algorithm [4]. Third, the algorithm

design techniques explore innovative techniques to

double the performance of key kernels while maintaining

insensitivity to the alignment of the data. Finally, we

document a concrete example of hardware and software

codesign, showing how algorithmic requirements drove

certain architectural decisions, how architectural choices

constrained compiler optimization possibilities, and how

algorithm design was creatively altered to work around

limitations in both the architecture and the compiler.

Some of the descriptions and results herein have been

presented in [5].

The remainder of this paper is organized as follows.

We describe the innovative features of the FPU and

then describe an optimizing compiler targeting this unit.

Following that, we present efficient algorithms for key

linear algebraic kernels for this unit. We then discuss the

evaluation of the level of success for both hand-optimized

and compiled code for these kernels, and explore how

close we can come to achieving twice the maximum

theoretical performance of the PPC440 FPU. We

conclude with an evaluation of the various design choices

and a discussion of possible future extensions to the FPU

architecture.

Architecture
The fused multiply–add (FMA) instruction, along with its

variants, T ‹ 6(B 6 A � C ) [6, 7], is the workhorse of

most modern FPUs. This single instruction delivers the

equivalent of two floating-point operations. The PPC440

FPU core, which is capable of performing one FMA

instruction per cycle while running at clock speeds in

excess of 500 MHz, is considered to have a peak

performance of more than a billion floating-point

operations per second (i.e., one Gflops).

The embedded PowerPC Architecture*, referred to as

Book E [8], allows for user-defined extensions to the ISA.

Additionally, the APU interface on the PPC440 G5 core

allows coprocessors to support new instructions—

referred to as APU instructions—without requiring

modifications to the CPU core [9]. While APU

instructions typically do not become part of the

architecture proper, they can still be utilized by

assemblers and compilers that target the specific

implementation.

To support multiple parallel executions and

simultaneous loading (to avoid data starvation), we

decided to pursue a SIMD-based approach. This would

also have the advantage of reducing the size of the code

footprint and the required bandwidth for instruction

fetching.While SIMD instruction sets already exist [10, 11],

including AltiVec**/VMX [10], which was specifically

defined for PowerPC, these units operate primarily on

integer and single-precision data. However, our target

applications require double-precision data. Additionally,

typical SIMD processors contain some sort of vector

register file. Each vector register contains multiple

elements, and each element, by default, occupies a fixed

‘‘slice’’ of the datapath. While this can be very efficient for

simple elementwise calculations, it lacks the flexibility

required by our workload.

The architecture of the PPC440 double-precision

floating-point (FP2) core is shown in Figure 1. The design

choice that we adopted goes beyond the advantages of

adding another pipeline and of the SIMD approach.

Instead of employing a vector register file, we use two

copies of the architecturally defined PowerPC floating-

point register (FPR) file. The two register files are

independently addressable; in addition, they can be

accessed jointly in a SIMD-like fashion by the new

instructions. One register file is considered primary,

the other secondary. The common register addresses

used by both register files have the added advantage of

maintaining the same operand hazard and dependency

control logic used by the PPC440 FPU. The primary FPR

is used in the execution of the preexisting PowerPC

floating-point instructions and the new instructions,

while the secondary FPR is reserved for use by the

new instructions. This allows preexisting PowerPC

Figure 1

Architecture of the IBM PowerPC 440 FP2—primary and secondary 
data flow.
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instructions—which can be intermingled with the new

instructions—to operate directly on primary side results

from the new instructions, adding flexibility in algorithm

design. We describe the use of the new instructions in the

section on DAXPY. New move-type instructions allow

the transfer of results between the two sides.

Along with the two register files, there are also primary

and secondary pairs of datapaths, each consisting of a

computational datapath and a load/store datapath. The

primary (secondary) datapath pair write their results only

to the primary (secondary) register file. Similarly, for each

computational datapath, the B operand of the FMA is

fed from the corresponding register file. However, the real

power comes from the operand crossbar, which allows

the primary computational datapath to receive its A

and C operands from either register file (see Figure 1).

This crossbar mechanism enabled us to create useful

operations that accelerate matrix and complex-arithmetic

operations. The power of the computational crossbar is

enhanced by cross-load and cross-store instructions that

add flexibility by allowing the primary and secondary

operands to be swapped as they are moved between the

register files and memory.

New APU instructions

The newly defined instructions include the typical SIMD

parallel operations as well as cross, asymmetric, and

complex operations. Table 1 shows a few examples. The

asymmetric instructions perform different but related

operations in the two datapaths, while the complex

operations include symmetric and asymmetric

instructions specifically targeted to accelerate complex-

arithmetic calculations. We call these new types of

asymmetric instructions SIMOMD, for single-instruction,

multiple-operation, multiple-data.

The asymmetric and complex instructions enable

efficient arithmetic on complex numbers and the

enhancement of fast Fourier transform (FFT) and FFT-

like code performance. The cross instructions (and their

memory-related counterparts, cross-load and cross-store)

help to efficiently implement the transpose operation and

have been highly useful in implementing some of our new

algorithms for basic linear algebra subroutine (BLAS)

codes that involve novel data structures and deal

with potentially misaligned data. Finally, the parallel

instructions with replicated operands allow important

scientific codes that use matrix multiplication to make

more efficient use of (always limited) memory bandwidth.

The FP2 core supports parallel load operations, which

load two consecutive doublewords from memory into

a register pair in the primary and the secondary unit.

Similarly, it supports an instruction for parallel store

operations. The PPC440 processor local bus supports

128-bit transfers, and these parallel load/store operations

represent the fastest way to transfer data between the

processor and the memory subsystem. Furthermore, the

FP2 core supports a parallel load-and-swap instruction

that loads the first doubleword into the secondary unit

register and the second doubleword into the primary unit

register (and its counterpart for store operation). These

instructions help the matrix transpose kernel more

efficiently.

IEEE Standard 754 compliance issues

The new APU instructions treat floating-point exceptions

as disabled and do not update the PowerPC floating-

point status and control register (FPSCR). We believe

Table 1 SIMOMD FMA instructions representing various classes of operations, their semantics, and their bindings to C99 built-in

functions.

FMA instruction class Mnemonic Operation C99 built-ins

Parallel fpmadd fT, fA, fC, fB
PT ¼ PA � PC þ PB

T = _ fpmadd(B,C,A)
ST ¼ SA � SC þ SB

Cross fxmadd fT, fA, fC, fB
PT ¼ PA � SC þ PB

T = _ fxmadd(B,C,A)
ST = SA � PC þ SB

Replicated fxcpmadd fT, fA, fC, fB
PT = PA � PC þ PB

T = _ fxcpmadd(B,C,ap)
ST = PA � SC þ SB

Asymmetric fxcpnpma fT, fA, fC, fB
PT = �PA � PC þ PB

T = _ fxcpnpma(B,C,ap)
ST = PA � SC þ SB

Complex fxcxnpma fT, fA, fC, fB
PT = �SA � SC þ PB

T = _ fxcxnpma(B,C,as)
ST = SA � PC þ SB
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that the default handling of exceptions, as defined in

IEEE Standard 754 [12], is sufficient for the needs of

our target applications. Additionally, the complexity of

handling enabled exceptions or updating the FPSCR for

SIMD-like instructions appeared to outweigh potential

benefits. Thus, the PPC440 FP2 core is consistent with

IEEE 754, although not strictly compliant. In addition,

the new instructions can operate in a non-IEEE mode

if an application does not require strict IEEE 754

compliance for denormalized numbers.

The PPC440 FP2 core contains parallel instructions for

generating a reciprocal estimate and a reciprocal square-

root estimate. These instructions produce an estimate

with a relative error of 2�13. While estimate instructions,

by their very nature, are not IEEE-compliant, the

enhanced accuracy of these estimates allows coders to use

a small number of Newton–Raphson-like iterations to

obtain properly rounded IEEE-compliant results.

Implementation issues

The dual-issue nature of the CPU allows the initiation in

each cycle of a quadword (i.e., two doublewords) load in

parallel with two FMAs, yielding a peak performance

of four floating-point operations per cycle. Latency and

throughput for the new instructions are the same as that

for the similar PowerPC floating-point instructions in the

PPC440 FPU. In typical cases, most of the instructions

have a single-cycle throughput. The associated typical

latencies are five cycles for computational (except for

divide) and move instructions, two cycles for instructions

that update the CPU condition register, three cycles for

stores, and four cycles for loads. Also, as in the PPC440

FPU, there is no hardware register renaming.

To avoid excessively depleting the opcode space

allocated for APUs, the unit performs only double-

precision arithmetic operations. This does not affect

performance because the latency of all instructions

(except for divide) is precision-independent. Load/store

operations convert single-precision operands to double-

precision as they enter the unit. Thus, applications that

can get by with the reduced precision of single-precision

raw data can consume less of the overall memory

bandwidth of the system.

To further economize on opcodes, we chose to limit

the permutations of operand swapping. For example,

the computational crossbar in Figure 1 allows 16

variations on the parallel-multiply instruction by

permuting on the source of the A and C operands

(i.e., A [p j s] *C [p j s] ! Tp; A [p j s] *C [p j s] ! Ts).

However, analysis of our target algorithms revealed that

they generally required only the four basic variations

of permuting on the source of the A operands (i.e.,

A [p j s] *Cp ! Tp; A [p j s] *Cs ! Ts). The function

of the other permutations could be achieved through

careful coding, often without performance penalty.

For example, the permutations on the C operand

could be achieved by using the four defined opcodes

and interchanging the roles of the A and C operands.

While it could certainly be argued that allowing a more

general sort of ‘‘shuffling’’ ability would ease the burden

on the programmer and compiler, it would make the

chip more complex and difficult to verify. Thus, the

aforementioned interchanges were agreed to as a codesign

compromise that allowed enough flexibility without

burdening the architecture with too much additional

complexity.

The load/store datapath pipes allow single-precision or

double-precision data to be transferred between memory

and the primary or secondary FPR file. Fortunately,

the PPC440 G5 core is able to support the loading or

storing of quadword operands in a single cycle. This

allowed us to define instructions to simultaneously

transfer doubleword data to or from both the primary

and secondary register files. For efficient transfer, data

must be word-aligned and must fit completely within a

quadword-aligned quadword, as shown in Figure 2. This

restriction exists because the cache architecture is such

that it can transfer data from either half of the cache line.

Each half is a quadword. Misalignments require that a

trap handler artificially align the data within a half line

and then perform the access again. Thus, the penalty

Figure 2

Alignment restrictions.
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for misaligned data accesses, done in a naive manner,

can be of the order of thousands of processor cycles.

The sections which follow on alignment handling and

DAXPY discuss how we proactively avoid this situation

in the compiler and at algorithm design time; we then

present empirical evidence that the penalty for such

accesses can be greatly reduced.

One compromise in the PPC440 FP2 core design is the

lack of ‘‘D-form’’ load/stores. The D-form instructions

generate an effective address by adding the contents of

a general-purpose register (GPR)—or zero—to a 16-bit

immediate value. Unfortunately, the only way to fit this

immediate value in the opcode is to use the portion of the

instruction normally used to hold the secondary opcode.

While the 16-bit immediate values add considerable

flexibility, each D-form operation—by virtue of reserving

all ten secondary opcode bits—consumes the space of

1,024 opcodes. Since we wanted to leave opcodes for

other APUs, we decided to forego these instructions.

Instead, we support indexed instructions, in which the

effective memory address is determined by the sum of two

GPRs or the value in a single GPR. The compiler team

felt that the lack of D-form load/stores would affect

performance because of the requirement for extra integer

registers to hold the displacements. This hypothesis was

tested by forcing the compiler to generate X-form load/

stores for all floating-point load/stores for a SPEC2000

benchmark suite floating-point (FP) run at -O3 on a

PowerPC POWER4* machine. The results showed an

average of 5.5% decrease in SPEC2000 FP performance.

This result is worse than a PPC440 FP2 core would

experience, since primary load/stores could still use

D-form load/stores.

Compilation
Code generation for the PPC440 FP2 core is done within

the TOBEY (Toronto Optimizing Back End with

Yorktown) back end [13] of the IBM XL family of

compilers for Fortran, C, and Cþþ. TOBEY has been

enhanced to schedule instructions for the PPC440 FPU

core and to generate parallel operations for the PPC440

FP2 core using extensions to the SLP algorithm of Larsen

and Amarasinghe [4].

Generation of parallel code is done late in TOBEY,

just before scheduling and register allocation. The SLP

algorithm works within a basic block. Consecutive

load/stores are paired up by matching base registers

and displacements, and use–def chains1 are used to

find additional candidate instructions for pairing. Each

candidate pair is evaluated to see whether generating the

paired instruction is more efficient than the sequential

instructions. A paired instruction is considered more

efficient if it requires no extra moves to put the

operands into the correct registers. For each instruction,

the estimated benefit is incremented if the operand is

known to be in the correct primary or secondary register

(because previously generated instructions have placed

it there) or if it is unknown (the register allocator will

allocate it properly). Operands known to be in incorrect

registers decrease the estimated benefit.

Each instruction may appear in only one parallel

instruction. Our implementation generates all viable

instruction pairs and then uses a Briggs coloring

algorithm [14] to find the sets of paired instructions for

which no instruction is in more than one pair. The benefit

for each set of pairs is then recalculated, and the set with

the largest benefit is selected. This is repeated until no

more paired instructions can be found in a block.

At this point, the original SLP algorithm combines

paired instructions to form larger sets, but this step can be

skipped for the PPC440 FP2 core because it has only two-

way SIMD parallelism. Instructions are then scheduled

to find a consistent ordering. The implementation of the

SLP algorithm is somewhat complicated by the existence

of asymmetrical instructions in the PPC440 FP2 core

instruction set. These introduce more possible instruction

pairs, complicating generation and estimation of the

benefits of each instruction. An example of this is the

fxcsmadd instruction. It can be replaced by an fxcxma

instruction by swapping the C operands. The benefit of

the instruction is calculated for both variants, and the

better one is used.

In addition, the C and Fortran front ends have been

enhanced with built-in functions for generating the

PPC440 FP2 core parallel instructions, exploiting the

complex*16 type in Fortran and double_Complex type

in C99. The built-in functions are unavailable in Cþþ
because that language does not support a built-in

complex data type. The section on algorithms contains

an example of the use of these facilities.

Alignment handling

In the preceding section on implementation issues, we

discuss the significant overhead of misaligned accesses

due to the high penalty of alignment traps on this

architecture. We have taken a multilevel approach to

avoid alignment trap penalties. The first approach is to

optimize data layout to maximize occurrences of aligned

accesses. Specifically, TOBEY maps data of size 16 bytes

or more on a 16-byte-aligned boundary for all stack locals

and externally defined data. It also provides a special

malloc routine that returns 16-byte-aligned memory

from the heap.

The second approach is to avoid alignment traps

as much as possible. Since alignment trap overhead

definitely nullifies any performance gains from1Use–def and def–use chains are a standard data structure in optimizing compilers.
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performing parallel load/stores, the compiler generates

parallel memory instructions only if the memory to

be accessed is known to be 16-byte-aligned. Therefore,

utilization of FP2 parallel memory instructions depends

heavily on the availability of accurate alignment

information. For local variables and external variables

defined in the current compilation unit, the alignment

information can be directly computed in the back end.

In the case of pointers, however, it is very difficult for

the back-end compiler to determine the alignment. To

address this problem, we implemented three solutions:

� We provided a built-in function for users to assert the

alignment of a given address expression at a specific

location in the program. The assertion is defined as

follows:

void _alignx (int alignment, const void * ptr).

The compiler can then utilize user-provided alignment

information to determine whether to generate parallel

load/store instructions. Figure 3(a) gives an example

of its use.
� We have implemented an interprocedural alignment

analysis to track the alignment of pointers. This phase

is implemented in the product loop-level optimizer,

called the Toronto Portable Optimizer (TPO), to

leverage the existing interprocedure and pointer-

analysis framework in TPO. TPO then passes the

collected alignment information to the back end

through the alignx assertion.
� When the alignment of some accesses cannot be

determined at compiletime, we resort to runtime

alignment testing by creating two versions of a loop,

with one version guarded under the conditions that

all accesses with unknown alignments are 16-byte-

aligned. The back end may then be able to generate

parallel load/stores for this version. The versioning

transformation is implemented in TPO and for loops

only. Since there are both performance and code size

overheads associated with loop versioning, extra care

has been taken to avoid excessive and nonprofitable

loop versioning.

Optimization of reductions

The original SLP algorithm is unable to pair instructions

that have a true dependence between them, such as an

FMA chain for sum reduction. We can break the true

dependencies between every set of two instructions if we

add temporary registers, facilitating the SLP optimization

to pair them up. When the SLP algorithm discovers a

true dependence between two isomorphic instructions,

TOBEY transforms them as described above if they are

part of a reducible chain. This optimization is performed

only if strictness is disabled for the procedure. TOBEY

currently detects chains of FMA, FP negate multiply

subtract (fnms), FP multiply subtract (fms), and FP

negate multiply add (fnma), pairing them up by using

their parallel equivalents. In the case of fms and fnma

chains, the data in the array must be aligned because they

require a cross move between the primary and secondary

registers, costing an extra operation. For the reduction to

be beneficial, parallel loads on the data are needed.

Register allocation

The challenges in register allocation relate to register

pairing in parallel instructions. The TOBEY intermediate

representation uses an infinite supply of symbolic

registers that are then colored to use a finite set of real

registers. The secondary FP registers are treated the same

as the primary ones. The instruction descriptions enforce

the pairing of one primary with the corresponding

secondary operand. For example, a parallel load

LPFL fp500, fp501=Memory (. . . .) indicates that the

first two operands are paired; fp500 must be a primary

register and fp501 must be secondary. Both symbolic

registers are also recorded as an aligned pair.

The register-coloring mechanism, based on the Briggs

register-coloring algorithm [14], is modified to allow

coloring of register pairs. Additional nodes are added

to the interference graph, one for each real hardware

register. In the building of the interference graph, each

symbolic register used where a primary (secondary)

register is required has an interference edge added to

all real hardware registers that are not valid primary

(secondary) registers. These new interferences restrict the

symbolic registers to their corresponding register subset.

Following the construction of the interference graph,

nodes (representing registers) are removed from the graph

one by one, starting with the lowest-degree nodes. As

long as there is a node with a degree smaller than the

number of physical registers, it is guaranteed to color and

can be reduced. If there is none, a heuristic is used to

select a node to spill. The removed or spilled node is put

on top of the reduction stack. To help in assigning colors

for pairs, reduced registers that are paired are set aside

until their partner register is reduced before they are put

on the reduction stack. Once both members of the pair

are reduced, the two registers are pushed onto the

reduction stack together.

When the interference graph is completely reduced,

registers are popped off the reduction stack and assigned

colors. In the modified algorithm, the hardware registers

are assigned colors first in order. This assigns each color a

primary or secondary attribute and matches each color

with its aligned partner. As the symbolic registers are

popped off the reduction stack, they are assigned colors

according to the Briggs algorithm. A symbolic register
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Figure 3

(a) Driver routine for DAXPY. The routines _daxpy1 and _daxpy2 assume that the length of their input vectors is a multiple of 8 to simplify 
unrolling and software pipelining, and terminate early if n � 0. (b) MATLAB** prototype matrix-panel kernel for level L1, C � AT �  B  + C.

static void _daxpy1(double a, double *x, double *y, int n) {
__alignx(16, x); __alignx(16, y); /* computation elided */
}

static void _daxpy2(double a, double *x, double *y, int n) {
__alignx(16, x�1); __alignx(16, y); /* computation elided */
}

void daxpy1(double a, double *x, double *y, int n) {
  int x_is_aligned, y_is_aligned, i;
  for (i � 0; i < n%8; i��) y[i] � a*x[i]�y[i];
  x �� n%8; x_is_aligned � ((x & 0x0000000f) �� 0)?1:0;
  y �� n%8; y_is_aligned � ((y & 0x0000000f) �� 0)?1:0;
  n �� n%8;
  switch (2*x_is_aligned � y_is_aligned) {
  case 3: _daxpy1(a, x, y, n); return;
  case 1: _daxpy2(a, x, y, n); return;
  case 2:
    y[0] � a*x[0] � y[0];
    _daxpy2(a, x�1, y�1, n�8); /* x�1 unaligned, y�1 aligned */
    for (i � 0; i < 7; i��) (y�n�7)[i] � a*(x�n�7)[i]�(y�n�7)[i];
    return;
  case 0:
    y[0] � a*x[0] � y[0];
    _daxpy1(a, x�1, y�1, n�8); /* x�1 aligned, y�1 aligned */
    for (i � 0; i < 7; i��) (y�n�7)[i] � a*(x�n�7)[i]�(y�n�7)[i];
    return;

  }
}

function Cout � DATB( m1, n2, k1, AR, BC, CC )
% m1, n2, and k1 are integer multiples of m0, n0, and k0.
% CReg, AReg, and BReg represent 16, 4, and 4, registers
% used to hold submatrices of C, A, and B, respectively.
m0 � 4; n0 � 4; k0 � 1;
for j�1:n0:n2
  for i�1:m0:m1
    CReg � CC( i:i�m0�1, j:j�n0�1 );   % load submatrix of C
    for p�1:k0:k1
      AReg � AR( p:p�k0�1, i:i�m0�1 ); % load panel of A
      BReg � BC( p:p�k0�1, j:j�n0�1 ); % load panel of B
      CReg � AReg’ * BReg � CReg;
    end
    CC( i:i�m0-1, j:j�n0�1 ) � CReg;   % store submatrix of C
  end
end
Cout � CC;                             

(a)

(b)
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that is a member of a pair is popped off the reduction

stack with its partner. The two registers are then assigned

colors together, thus ensuring a valid color pair.

Another challenge is combining two spill load/stores

into a parallel load/store. Intermediate spill instructions

with compatible paired registers are combined first;

only afterward is space dedicated in the spill area. An

execution count estimate is used to prioritize combining

of these spill locations.

The remaining challenge is to rematerialize parallel

loads as individuals. Memory locations determined as

constant are added to the rematerialization table. A

parallel load, such as in the previous example, also

generates two individual entries (fp500 and fp501) using

scalar load instructions. With these additional entries,

these two registers can be rematerialized individually

if needed.

Future work

The PPC440 FP2 core provides parallel load instructions

that can load successive floating-point values into

the primary and secondary registers either as

,primary,secondary. or ,secondary,primary. pairs.

This decision must be made in the first phase of the SLP

algorithm and will change the estimated savings benefits

for future pairs of instructions. For example, one choice

may prevent parallel code from being generated. An

algorithm to estimate the impact of each operation (load)

choice must be employed.

The current SLP algorithm generates code

independently for each basic block. The SLP algorithm

must be enhanced to support extended basic blocks. This

may allow more parallel instructions to be generated.

Another important method for generating FP2

instructions is to exploit loop-level SIMD code-

generation techniques (SIMDization). Compared with

the SLP algorithm, loop-level SIMDization keeps

information in a more compact form and is more

deterministic than the greedy-based packing approach

used by SLP. Another advantage of loop-level

SIMDization is its ability to handle misaligned accesses.

We have recently proposed a general framework to

SIMDize loops with arbitrary compiletime and runtime

misalignment [15]. This framework has been implemented

in TPO for VMX extensions for PPC970 processors. We

are in the process of retargeting this framework for the

PPC440 FP2 core.

Algorithms
This section discusses several important ideas in the

design of high-performance BLAS that exploit the unique

characteristics of the PPC440 FP2 core while steering

clear of potential pitfalls that carry a large performance

penalty. Here, we restrict our discussion to two examples:

matrix multiplication, a key level 3 BLAS [16] kernel

whose data reuse allows near-peak floating-point

performance to be reached, and DAXPY, a

representative level 1 BLAS [17] kernel in which

performance is limited by the memory bandwidth, and

data alignment becomes important.

Matrix multiplication: C ‹ aCþ bA � B

Traditionally, high-performance matrix-multiplication

algorithms have involved the use of a kernel routine that

takes advantage of the low-latency, high-bandwidth L1

cache. Several approaches to blocking for this routine at

higher levels of memory have been published [18–21]. For

example, if the A matrix is of size M3 K, a blocking of

this matrix yields submatrices (blocks) that are of size

MB3 KB. For the L1 level of memory, our model

indicates that one should load most of the L1 cache with

either the A or the Bmatrix operand. The other operands,

C and B or A, are respectively streamed into and out of

(through) the remainder of the L1 cache, while the large

A or B operand remains consistently cache-resident. Our

kernel places the B operand, of size KB3 NB, in the L1

cache, filling most of the cache. However, we can stream

m1 = M/MB blocks of size MB3 NB and MB3 KB,

of C and A, respectively, through the L1 cache. We

observe two practical benefits from our form of kernel

construction and usage: First, a rectangular blocking

where NB , KB leads to a higher computational rate

because of the inherent asymmetry that results from

the fact that we have to load and store C. Second,

the streaming feature allows a factor of M/MB

fewer invocations of the kernel routine.

In theory: The PPC440 FPU core L1 kernel

We sketch how to optimally implement a matrix-multiply

kernel for C = Cþ A � B under the assumptions

mentioned above. Only a register block, a panel, and a

resident matrix will occupy the L1 cache during a given

time interval. See Figure 3(b) and [6, 19, 22] for further

details.

The amount of memory at the L0 level corresponds to

the number of registers. Let an m0 3 n0 block occupy

‘‘most’’ of the registers and be used to hold an m0 3 n0
submatrix of C, while the remainder of the registers are

used to stream in row/column elements of A and B. This

requires m0 � n0 þ m0 þ n0 FPRs. Since registers can

be loaded more efficiently from contiguous memory,

traditionally this has meant ‘‘preparing A,’’ stored by

column (the result is AT), by storing it by row and

computing C = Cþ (AT)T � B. To take advantage of the

prefetching abilities of the L2 cache and not exceed its

seven-stream limit, we prepare both the A and Bmatrices.

This results in utilizing no more than three streams

per core.
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The pattern of matrix multiplication requires that we

access rows of A and columns of B. Since maximizing the

number of independent dot products in the inner kernel

dictates the use of an outer-product matrix-multiplication

algorithm at the register level, the format of these two

submatrices is prescribed. We reformat (part of) the A

matrix in a ‘‘column-internal, row-external’’ format. This

means that we store some number (m0, above) of the rows

of A consecutively (row-external), and within that row-

block, we store the elements in column-major format

(column-internal). When m0 is 1, this is the same as row-

major format. For analogous reasons, we store (part of)

the B matrix in row-internal, column-external format. In

most cases, the elements of C are not reformatted, but

may be rearranged in the register file. This approach leads

to an access pattern utilizing two L2 cache streams per

core and, in some exceptional cases, a third stream is

consumed by C.

The PPC440 unit has 32 FPRs, and it is capable of

performing one load/one store and one FMA, in parallel,

in one cycle for data residing in the L1 cache. As shown in

Figure 3(b), the inner kernel is easy to understand at a

high level. In practice, loads, calculations, and stores are

staggered (i.e., preloads are performed) in such a manner

as to allow the floating-point pipeline to ‘‘flow’’ efficiently.

Thus, it follows that m0 = n0 = 4 is a good choice

because this utilizes 24 FPRs.

Figure 3(b) gives a simplified prototype MATLAB2

implementation of our L1 kernel algorithm: 16 FPRs

(T00-T33) are needed to hold a 43 4 block of C,

CC (i: iþ3, j: jþ3). Its inner loop consists of four

loads of A (AR (p, i: iþ3)) into four FPRs (A0A3),

four loads of B (BC (p, j: jþ3)) into four FPRs

(B0-B3), and 16 independent dot-product operations

(FMAs); for example,

T12 ¼ T12 þ A1 * B2

where T12 holds CC (iþ1, jþ2), A1 holds AR (p, iþ1)
(A (iþ1, p)), and B2 contains BC (p, jþ2).
Note that the use of k0 = 1 is a simplification. To

minimize the impact of latency, k0 is kept greater than 1

so that the time between the load and use of the registers

holding the A and B submatrices can be increased.

In practice: The PPC440 FP2 core L1 kernel

Given the nature of the architecture, we want to use the

PPC440 FP2 core as a SIMD vector machine of vector

length 2. Conceptually, this can be realized by performing

23 23 1 submatrix computations on 23 2 submatrices.

Let us choose the A matrix to hold vectors of length 2.

The B matrix will also hold vectors of length 2; however,

the components of B will be used as scale factors. A

simple example will clarify what we have in mind.

We compute the first column of

C(i: iþ1, j:jþ1) ¼
A(i:iþ1, l:lþ1) * B(l:lþ1, j:jþ1)

as

aði; lÞ

aðiþ 1; lÞ

" #
bðl; jÞ þ

aði; lþ 1Þ
aðiþ 1; lþ 1Þ

� �
bðlþ 1; jÞ

and calculate the second column in a similar fashion,

using the two scalars, b (1: 1þ1, jþ1).
To respect the cache-line size, we have designed our

inner kernel as two k-interleaved 43 23 8(m03 k03 n0)

matrix multiplications. Even though this architecture

exhibits extremely good latency characteristics, we load

the non-cache-resident matrix, A, in 43 4 ‘‘chunks.’’

This yields a latency tolerance greater than 40 cycles for

elements of A and greater than 20 cycles for elements of B,

the cache-resident matrix. Since the cold load time from

the L2 cache to the registers is no more than 18 cycles, this

should allow the inner loop of our algorithm to proceed at

the peak rate of the machine. The extra latency tolerance

is built into the algorithm so that it covers most of the L3

latency for the nonresident A matrix. The 20-cycle latency

coverage for the cache-resident matrix is advisable,

because the L2 prefetch stream dictates that the first load

of a column block of B will result in an L2 miss, and

we wish to tolerate that as well.

In practice: The PPC440 FP2 core L3 kernel

Unfortunately, as can be seen in the performance graphs

in the results section, while this algorithm results in good

performance, there is room for improvement. While the

design is generally sound, there is one fairly obvious

problem. One invocation of the 43 23 8 update requires

32 cycles for computation as well as the loading of 12 dual

registers with A and B. When the B operands are in L1,

this presents no problem. However, the bandwidth from

L3 is 5.3 bytes per cycle, and this implies a 36-cycle

requirement for operand loading, resulting in an update

that proceeds at 89% of peak. Because the L1 cache

replacement policy is not least recently used (LRU), this

unfortunate eviction of B occurs often enough to affect

performance.

Fortunately, the large register set and low latency of

this architecture allows us to code around this problem by

blocking for and targeting the L3 cache. Changing the

inner kernel update to a 63 23 6 format yields an inner

kernel that requires 36 cycles for computations and 36

cycles for operand loading from L3. The efficacy of this

approach is shown by data presented in the results

section.
2Notice that the redundant data copying often required by call-by-value MATLAB
can easily be avoided when the kernel is implemented in C, Fortran, or assembly code.
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DAXPY: y ‹ ax þ y

The BLAS1 routine DAXPY adds to vector y a multiple

of vector x. In contrast to the matrix-multiplication

routine, there is no reuse of the vector arguments, and the

computation of a single element of the result involves two

loads, an FMA and a store. Performance is therefore

limited by the speed at which data can be transferred

between the memory hierarchy and the register file, and

it is therefore important to use quadword load/stores.

Given the substantial penalty for unaligned quadword

accesses, the overriding issue in gaining efficiency for

DAXPY is that of being able to maintain quadword

access to and from memory regardless of the alignment

of the x and y vectors (assuming that these are stored

contiguously in memory).

Depending on the alignments of vectors x and y, there

are four possibilities. When both vectors are quadword-

aligned, it is trivial to perform quadword load/stores and

SIMD FMAs. If both vectors are misaligned, the first

element is ‘‘peeled,’’ thereby aligning the remaining

subvectors. This situation is illustrated in Figure 4(a) and

represented by the routine _daxpy1 in Figure 3(a).

The more interesting case arises when one vector is

quadword-aligned while the other is not. This situation

can arise, for instance, with successive rows of a C array

with an odd number of columns, or successive columns of

a Fortran array with an odd-sized leading dimension.

This case is illustrated in Figure 4(b) and called _daxpy2

in Figure 3(a). Assume, without loss of generality, that

vector y is aligned and vector x is not; then vector

elements y2i and y2iþ1 are computed as follows:

1. Assume that registers P0 and S0 contain x2i�1 and x2i .

2. Load y2i into register S1 and y2iþ1 into register P1

using a cross-load.

3. Perform an fxcpmadd operation: P3/S3 = a � P0/S0þ
P1/S1. Register S3 contains ax2i þ y2i, while register

P3 contains junk.

4. Load x2iþ1 and x2iþ2 into registers P0 and S0 using a

parallel load. (This operation also sets up the

required precondition for i þ 1.)

5. Perform a scalar FMA: P3 = a � P0þP1. Register P3

now contains ax2iþ1 þ y2iþ1.

6. Store y2i and y2iþ1 to memory from register pair

P3/S3 using a cross-store.

Thus, we have exploited the inherent 3:1 imbalance in

memory accesses to FMAs in this operation to perform

redundant floating-point operations while operating at

peak cache bandwidth. With four-way loop unrolling and

software pipelining, these operations can be scheduled to

initiate a quadword load or store at each cycle. Note

the critical use of the cross-loads and cross-stores on

the y vector and the use of redundant computation to

compensate for the relative misalignment between x and

y. More elaborate versions of this technique are used

when computing the dot product of two vectors and when

computing a matrix–vector product.

Figure 3(a) shows the driver routine for a DAXPY

routine that works for vectors of arbitrary size and

alignment. It illustrates the use of the _alignx directive

discussed previously in the alignment-handling section.

Experimental results

We now describe the performance of various

computational kernels on Blue Gene/L hardware. This

system runs at 700 MHz and consists of 2,048 compute

nodes. We limit ourselves to describing the results

obtained on a single node of the BG/L system, since our

focus in this work has been on exploiting the dual-issue

FPU. Clearly, the performance results we have obtained

on these computational kernels have been important

for achieving high performance on the parallel

applications that use these kernels.

To ‘‘measure’’ the programming effort involved, we

coded multiple versions of the test codes, as appropriate.

Figure 4

Alignment possibilities in DAXPY:  (a) Vectors x and y are both quadword-aligned.  (b) Vector x is misaligned, while y is quadword-aligned.
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Their nomenclature and descriptions are as follows.

With the exception of the DGEMM routines, all codes

are in C and are compiled using the modified XL C

compiler described above in the compilation section,

with optimization level -O3. The DGEMM routines

were written in assembly language and compiled using

the GCC (GNU compiler collection) compiler. For the

XL C routines, the digit appended to the name of the

routine indicates the level of optimization employed,

as follows:

0 The source code of this version contains no

architecture-specific optimizations.

1 This version augments version 0 with alignment

information (_alignx (16, x)) and pragmas asserting

the absence of pointer aliasing (#pragma disjoint

(*x, *y)). These enable the compiler to generate

more PPC440 FP2 core instructions—in particular,

more parallel load/stores. Figure 3(a) shows an

example. Additionally, this version modifies Version 1

by using the C99 built-in functions shown in Table 1

to select PPC440 FP2 core instructions, making the

compiler responsible for instruction scheduling and

register allocation.

2 This version, in addition to containing the

information present in Version 1, incorporates loop

unrolling and software pipelining to help the compiler

identify PPC440 FP2 core operations and to reduce

pipeline stalls.

In Figures 5(a)–5(g), we present performance results

for the DAXPY, DGEMV, and Streams benchmark

suite, and matrix–matrix product (DGEMM).

DAXPY

The DAXPY results presented in Figures 5(a) and 5(b)

demonstrate that the relative performance of small

DAXPY routines can be virtually insensitive to data

alignment. In one case, both vectors are misaligned; in the

other, both are aligned. The same trend holds when the

two vectors are relatively misaligned.

Figure 5(b) shows that this trend continues when the

vector sizes become large. The same figure also illustrates

that there are several kinds of data (mis)alignment that

come into play. The most important kind of data

alignment, the 16-byte alignment that allows vector

load/stores to occur, has already been discussed.

However, L1 and L3 cache-line alignment are also

relevant to performance. This figure illustrates the effect

of different relative alignment on L3 cache lines. Because

of the manner in which memory banks are accessed,

different relative alignments lead to different performance

characteristics. While we have done further work on this

issue and have been able to mitigate some of these effects,

we do not present such results here.

DGEMV

Like the DAXPY routine, DGEMV is a BLAS routine

whose performance is bandwidth-limited. Similar

techniques are used to render this routine relatively

insensitive to data alignment, and our experiments have

shown that, using a single core, this routine operates

at nearly the bandwidth limit of the architecture.

Figure 5(c) demonstrates both the advantages of hand-

tuned code over code containing no architecture-specific

optimizations and, less obviously, the performance

differences (‘‘bumps’’) encountered when crossing into a

new level of the machine memory hierarchy. This cache-

boundary effect is perhaps more apparent in Figure 5(b).

Since DAXPY has no useful operand reuse and DGEMV

has only minimal exploitable data reuse for large problem

sizes, this appears to be unavoidable. Below, in matrix–

matrix multiplication, we see that, thanks to the

bandwidth and other characteristics of this architecture,

this effect can be virtually eliminated for computationally

intensive kernels, such as DGEMM.

Finally, it should be pointed out that these results were

obtained with an older version of the compiler. The

compiler gives relatively good performance when given

data alignment and pointer alias information in many

situations, and efforts are being made to use techniques

such as interprocedural analysis and loop versioning to

make what we refer to here as a ‘‘0type’’ code perform far

more like a ‘‘1type’’ code. Nonetheless, when instruction

scheduling and cache hierarchy blocking are extremely

important, the performance of architecture-independent

codes does not match that of hand-tuned code, such as

the assembly-coded DGEMM kernel discussed in this

section.

Stream-oriented codes and SIMDization

The advantages of SIMDization and careful instruction

scheduling are illustrated in Figures 5(d) and 5(e). These

figures also illustrate how efficient compiler-generated

code can be when information regarding pointer aliasing

and alignment is exploited.

Figure 5(e) makes this most apparent, as it expresses

the speedup advantage of the various codes in the

Streams benchmark suite. Notice that all of the

benchmarks experience a gain from approximately 50%

to 100% (23) in achieved bandwidth, greatly narrowing

the gap between achieved and optimal performance

for these codes.

Matrix–matrix multiplication

Figures 5(f) and 5(g) respectively illustrate the

performance characteristics of L1 and L3 cache-blocked
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Figure 5

 Running time for various versions of test codes on the PPC440 FP2 core.
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algorithms. Both matrix-multiplication routines were

coded in assembly to handle instruction scheduling

and more carefully manage the register file.

Figure 5(f) demonstrates that failing to block for the

targeted level of cache can be extremely detrimental to

performance. The L1-B trend shows the performance

of a properly blocked kernel, while the L1-no line

demonstrates what can happen when blocking is not

carefully managed. As the matrix size increases past that

which can fit into the L1 cache, performance tapers off.

It is largely because of the relatively robust and

sophisticated memory system that performance does

not fall off significantly faster than it does here.

In many cases, especially in computationally intensive

codes, it is possible to avoid any perceptible bumps in

performance as memory levels are crossed. Preliminary

results involving an L3-based matrix-multiplication

kernel [Figure 5(g)] reflect this fact. Because of the

healthy bandwidth from the L3 cache and the large

register file, this architecture is capable of attaining

almost the theoretical peak computational rate of the

machine for such codes.

Taken together, Figures 5(f) and 5(g) indicate that the

architecture is capable of sustaining very close to peak

performance when utilizing suitably blocked BLAS3-like

algorithms. Note that these results reflect kernel speeds

and do not take into account the overhead of data

transformations, although these are almost negligible for

the (larger) L3-cache-based results. Finally, the DGEMM

kernels scale well enough to make presenting single-core

results redundant. Thus, for this kernel, only dual-core

results are shown.

Conclusions and future work
At a very high level, high-performance engineering and

scientific software can be viewed as an interaction among

algorithms, compilers, and hardware. This paper is an

illustration that such an interaction can produce an

FPU and tool chain for engineering and scientific

computations that can deliver a substantial fraction

of its advertised peak performance.

The PPC440 FP2 core hardware extends the PPC ISA

in novel ways to support fast floating-point kernels, while

being able to reuse much of the logic and layout of the

PPC440 FPU. The new design can run PPC floating-point

code as well as code employing our new instructions, and

effectively double the peak arithmetic and memory access

performance of the core. The compiler for the unit

extends both the SLP algorithm for parallelism detection

and the Briggs register allocator to handle register pairs.

The design of high-performance algorithms for this unit

involves innovative techniques to balance the memory

bandwidth and floating-point requirements of the

operations without unnecessarily constraining data

alignment. Initial results show that we are able to sustain

a large fraction of the peak performance for key floating-

point routines.

There are several possible directions for future work.

On the hardware front, while the paired approach worked

very well, we could effectively double the performance

again had we added a second pair and a means to keep

the data fed. On the compiler front, we discussed several

capabilities not yet in the compiler whose inclusion would

enhance its capabilities. On the algorithm design front,

there are many more operations for which we plan to

design efficient algorithms.
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