
Early performance data on
the Blue Matter molecular
simulation framework

R. S. Germain
Y. Zhestkov

M. Eleftheriou
A. Rayshubskiy

F. Suits
T. J. C. Ward

B. G. FitchBlue Matter is the application framework being developed in
conjunction with the scientific portion of the IBM Blue Genet
project. We describe the parallel decomposition currently
being used to target the Blue Gene/L machine and discuss the
application-based trace tools used to analyze the performance of
the application. We also present the results of early performance
studies, including a comparison of the performance of the Ewald
and the particle-particle particle-mesh (P3ME) methods, compare
the measured performance of some key collective operations with
the limitations imposed by the hardware, and discuss some future
directions for research.

Introduction

One of the two major goals of the Blue Gene* project

announced by IBM in December 1999 was the

application of the massive computational power being

developed for that project to advance our understanding

of biologically important phenomena, such as protein

folding via large-scale simulation [1]. Studying the

mechanisms behind protein folding and related areas can

require long biomolecular simulations on a wide range of

system sizes. The application supporting this work must

map well onto a range of parallel cluster sizes to optimize

scientific throughput for a particular study. System sizes

of interest range from 5,000 atoms (for a small peptide

in water) through 30,000 to 50,000 atoms (for a

folded 200-residue protein in water or a small protein

membrane system) up to 200,000 atoms or more (for

larger-scale membrane systems or an unfolded protein

in water). Our design point targets system sizes in the

10,000- to 100,000-atom range.

The application effort we have made as part of the

Blue Gene project also has two goals: first, to support

the scientific goal of the Blue Gene project related to the

use of biomolecular simulation for studies of biologically

important phenomena, and second, to explore novel

approaches to programming applications that target

massively parallel system architectures in the context

of a concrete problem. To address these goals, we have

developed an application framework, called Blue Matter,

that is currently focused on biomolecular simulation,

and whose architecture has previously been described

[2]. A version of Blue Matter running on conventional

hardware (IBM pSeries*) has been used in production

for scientific work [3], and we are now doing production

runs on Blue Gene/L (BG/L) prototype hardware.

One of the principal design goals for this framework is

to encapsulate the semantics of biomolecular simulation

through the definition of appropriate interfaces so that

explorations of performance and scalability alternatives

can take place with minimal intervention from the

domain experts on the team. Furthermore, we have

decomposed the application into a core parallel engine

that runs on BG/L and a set of support modules

providing setup, monitoring, and analysis functionality

that can run on other host machines. Minimizing system

environmental requirements for the core parallel engine

enables the use of nonpreemptive low-overhead parallel

operating system kernels [4] to enable scalability to

thousands of nodes.

In this paper, we describe some early performance data

obtained on BG/L using the Blue Matter application. Our

methodology for acquiring and analyzing performance

data is described, along with the results of a comparison

between two algorithmic alternatives for evaluating long-

range electrostatic forces. We present a comparison of

the measured performance of a key component of our

application (in the context of our current parallel

decomposition) with the potential performance of the

hardware. Finally, we give a brief description of our plans

for further explorations.

�Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 R. S. GERMAIN ET AL.

447

0018-8646/05/$5.00 ª 2005 IBM

BG/L from an application perspective
While detailed descriptions of the BG/L hardware

platform exist elsewhere [5], it is useful to review some of

the aspects of the machine that are most interesting to

application developers. First, there are two identical IBM

PowerPC* 440 central processing units (CPUs) on each

chip, and each CPU has a dual floating-point unit (FPU).

This FPU executes instructions in single-instruction

multiple-data (SIMD) fashion, like a two-element vector

processor. Making more effective use of these double

FPUs is still an area of intense activity within the Blue

Gene project. Although the CPUs are identical, one of the

CPUs is intended for use as a communication coprocessor

when executing a communication-intensive application.

There are two main modes of operation supported by the

system software:

� Coprocessor mode, in which one CPU is used for

computation and the other is used for communication.
� Virtual node mode, in which both CPUs carry out

both communication and computation and, from the

perspective of the application, support independent

processes that communicate only via message

passing.

The results reported here were all taken in coprocessor

mode and with the compiler flag -qarch=440, which

does not take advantage of the double FPU. As our

explorations of parallel decompositions and the work

on code generation by the compiler continue, we expect

to remove both of these restrictions.

BG/L has two physically separate networks used for

high-performance communication between nodes: a

three-dimensional (3D) torus network in which every

node is connected to its six nearest neighbors, and a

hardware collective network that allows rapid broadcasts

and reductions. The collective hardware supports fixed-

point operations within reductions. For the results

reported here, a fixed-point MPI_AllReduce implemented

on the hardware collective network is used to make atom

positions stored on individual nodes visible to all of

the nodes in the system (an operation equivalent to

MPI_Allgatherv). The accumulation of forces on each

particle in the system is carried out using a floating-point

MPI_AllReduce operation implemented on the torus

network. The torus network is also used as the

communication fabric for the 3D fast Fourier transform

(FFT) [6] that forms an integral part of the particle-

particle particle-mesh (P3ME) technique used to handle

electrostatic forces.

Application-level tracing on massively parallel
machines
To tune application performance, including identifying

load balance issues on a machine such as Blue Gene/L,

tools capable of acquiring, managing, and analyzing

data from thousands of nodes are a necessity. To

address this need for our own code development, we

developed an application-based tracing methodology

that is lightweight, can be turned off entirely via

recompilation, and for which we have developed

tools that can handle hundreds or thousands of

nodes. The current implementation has Cþþ bindings

only, but the techniques involved could be used with

other languages as well.

Currently, two different sorts of analysis are performed

on the trace data created in this way. First, the acquired

trace data can be viewed directly in a visualization tool, as

shown in Figure 1. Second, statistical analysis of the trace

data from a series of runs at different node counts can be

carried out in an automated way and output in tabular

form. Because the trace visualization tool shows the

actual timestamps, skew between nodes as well as load

imbalance can be identified.

Parallel decomposition and early performance
data
The decomposition currently implemented by the Blue

Matter application is a replicated data decomposition in

Figure 1

Cropped image of the trace visualization tool showing output
from a 512-node run. Timebase synchronization between nodes
can be achieved either through synchronization of the clocks
across the machine, which is enabled by the hardware, or by
inserting a barrier at the start of the run and using this to synchro-
nize the time traces during post-processing. This synchronization
permits the observation of skew (differences in the absolute time
for the start of some procedure) between nodes as well as load
imbalance. The colors in the trace figure represent the following
(read from left to right): blue—bonded force calculations;
yellow—Verlet list creation (happens on only some timesteps);
green—real space non-bond force calculations; pink—P3ME
charge meshing; orange—forward and reverse 3D FFTs; brown
(between the forward and reverse FFTs)—kernel computation;
brown—P3ME force calculation; gray—floating-point allreduce
operation on forces; brown—rattle; purple—integer allreduce of
positions.

R. S. GERMAIN ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

448

which a pair of arrays containing all of the positions of

particles and the net force on each is maintained. A

number of papers have described the taxonomy of

parallel decompositions of molecular dynamics along

with their scaling properties with respect to space per

node, computational burden, and communication volume

[7–9]. In particular, when large systems with several

hundred thousand particles or more are the target, a

spatial decomposition scheme is typically used in which

the problem domain is divided into subvolumes assigned

to specific nodes. A replicated data scheme was chosen as

the first decomposition for exploration primarily because

it simplifies load balancing. It has the disadvantage that

the amount of memory required on each node and the

volume of global communication required are both

proportional to the number of particles being simulated

and independent of the processor count. For the range of

system sizes (10 to 100,000 atoms) and node counts (512

or smaller) that would be available during the initial

phases, calculations based on projected hardware

capabilities indicated that performance would be

adequate [2].

The system of particles is partitioned into fragments

that comprise small groups of particles that are connected

by bonds. We impose the rule that a bond whose length

is constrained cannot cross fragment boundaries. The

current decomposition binds individual fragments to a

particular node. To support the calculations required for

molecular dynamics, the positions of each particle are

globalized via an AllReduce operation by first doing a

fixed-point reduction in a vector of 3N double-precision

numbers, where N is the number of particles, and then a

broadcast. (Both are currently implemented using the

hardware collective network.) To avoid replication of

pairwise force calculations, the summed forces on each

particle are also computed via a global (floating-point)

reduction, which is currently implemented on the torus

network. Both of these operations are invoked via MPI

collective operations on MPI_COMM_WORLD. The global

force reduction also simplifies load balancing, because

contributions to the summed force vector can come from

any node.

Although these operations are nonscalable (in the

sense that they should be approximately constant time,

independent of node count), as long as they represent a

small fraction of the total timestep, this approach should

be viable. It is instructive to attempt to estimate the

ultimate hardware limits to performance for these

operations. For example, the position globalization uses

the hardware collective and fixed-point operations that

are built into the collective hardware. Since the collective

network bandwidth is 4 bits per cycle, and assuming that

the collective network can stream at full bandwidth in

both directions, the time required is approximately 69 ns

per particle. The comparisons between the limits

established by this estimate and the performance

measured at the application layer are given in Table 1.

Algorithmic explorations

Ewald implementation

In the direct implementation of the Ewald method [10],

the computationally expensive structure factors are

evaluated explicitly for all charges and reciprocal space

momenta. A number of algorithmic improvements have

been introduced to reduce the number of trigonometric

function calls and the total number of floating-point

operations.

The parallel Ewald algorithm is structured in the

following way. The positions and charges of all particles

are available to each node after the position globalization

operation. Each node is assigned a subset of particles for

which it calculates the individual structure factors for all

reciprocal space momenta. The global structure factors

are summed over all particles for each momentum using

the global reduction operation. The forces on particles

assigned to a processor are computed using both global

and individual structure factors.

The only communication specific to this parallel Ewald

algorithm is the global reduction of structure factors.

The forces on particles from the reciprocal space

contribution of the Ewald method are computed on

the nodes to which these particles are assigned and do

not require any additional communication. The cost

of this communication step should be constant as a

function of node count since the volume of floating-

point data is fixed.

Parallelization of the P3ME method

In this section we describe the parallel implementation

of the P3ME algorithm [11] for an efficient evaluation

Table 1 Comparison of the hardware bandwidth-limited time

and measured times for the integer AllReduce on the hardware

collective used in the position globalization operation on two

different system sizes. The data reported here is taken for

512 nodes. The bandwidth-limited times were computed by

simply taking the data volumes for the positions 33 Natoms 3

sizeof(double) and dividing by the collective bandwidth, 4 bits per

cycle assuming a 700-MHz processor clock. A very large fraction

of the hardware-limited bandwidth (more than 90%) is realized at

the application.

Atom

count

Hardware bandwidth-

limited time

(ns)

Integer AllReduce

(measured)

(ns)

5,289 363,000 396,000

43,222 2.96 3 106 3.15 3 106

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 R. S. GERMAIN ET AL.

449

of the long-range forces. The P3ME method on BG/L

is implemented via a volume decomposition of the

simulation volume (and the corresponding FFT grid)

onto the processor node mesh. We briefly describe the

parallel computation of the P3ME method:

� The point charges are mapped to a grid with

weights determined by the Euler exponential spline

coefficients, the cardinal B-splines. It is assumed that

the number of grid points is sufficiently large and the

interpolation level is sufficiently small that point-

charge positions required for the interpolation have

been communicated to each processor as part of the

real space intermolecular force evaluation.
� A forward 3D FFT is carried out on the meshed

charge data using the algorithm described in a

companion paper [6].
� Pointwise multiplication is performed by the kernel:

½4pexpð�g2=4a2ewdÞ=Vg2�:
� Inverse 3D FFT is performed on the resultant product.
� Forces are calculated in real space using the

transformed product function and the derivatives

of the weighting functions.
� All nodes participate in an all-reduction (floating-

point summation) implemented over the torus

network, with each node contributing the results of its

assigned interactions (from real space and k-space).
� In the current decomposition, each atom is bound to

a particular node, and the positions and velocities

of each atom are propagated forward in time by

numerical integration of the equations of motion.

Parallel performance measurements

Parameters used in simulations

To carry out a fair comparison of the Ewald and P3ME

method performance, it is necessary to select parameters

that give comparable numerical accuracy for both

methods. There exist analytical estimates of the accuracy

for both methods [12, 13]. We used the numerical

accuracy of the energy calculation as compared with

the result at large real-space cutoff and large Kmax

as a rough measure.

The parameters that affect the accuracy of the

reciprocal space of the P3ME method are the mesh

spacing size, which is usually selected to be between 0.5 Å

and 1.0 Å, the a parameter, the number of mesh points

for charge assignment, and the algorithm to compute

electric fields at the mesh points. For the latter, the

choices in Blue Matter are the ‘‘analytical’’ and

‘‘gradient’’ methods, which are named following [11].

They differ in the number of inverse FFTs involved in

force and energy calculations, one for analytical and four

for gradient. In the measurements reported here, we

use the analytical method. For the Ewald method, the

relevant parameters are a and the cutoff momentum,

which is proportional to the parameter called Kmax and

inversely proportional to the box size. The real space

contribution accuracy is the same for both methods, as

determined by the value of the cutoff in the real space

and the parameter a.
For the purposes of the current performance runs, the

real-space cutoffwas fixed at 10 Å, with the switch function

in the potential gradually decreasing to zero within the

1-Å-thick shell. The function is such that the resulting

forces are smooth around the switch region. The

integrator is velocity Verlet [14], with the timestep size

of 1 fs for the 5K-atom hairpin system and 2 fs for the

43K-atom membrane system. These timestep choices give

good energy conservation for their respective systems. The

charges were assigned to a cube surrounding each particle

with four mesh points extant in three dimensions. In the

hairpin simulation, we used a mesh size of 643 643 64;

for the larger rhodopsin system, the mesh size was

chosen to be 1283 1283 128. We set the a parameter

to 0.28. The Kmax parameter was set to 11 for the hairpin

system and 20 for the rhodopsin system. This choice

of parameters gave a reasonable accuracy (about six

significant digits) for both the Ewald and P3ME methods.

Two different molecular systems were used for these

studies. The smaller system was a solvated b-hairpin
system comprising 5,239 atoms, including 1,660 single-

point-charge (SPC) water molecules, and used the

Optimized Potential for Liquid Simulation—All Atom

(OPLSAA) [15] force field. The larger system, a

solvated lipid/protein system, comprised 43,222

atoms, including 7,400 SPC water molecules and

used the CHARMM [16] force field.

Results

We carried out this study to understand the scalability

characteristics of our current implementation of the

molecular dynamics application on the BG/L architecture

using two different methods for evaluating the long-range

forces P3ME and Ewald. Message Passing Interface

(MPI) was used as the communication layer; the fixed-

point collective operation that was used to globalize the

particle positions was implemented on the hardware

collective network; and the floating-point collective

operations used to reduce the force contributions and

compute the structure factors for the Ewald technique

were implemented on the torus network.

We report performance numbers on 32, 128, 512, and

1,024 nodes [Figures 2(a)–2(d)]. All of this data was taken

in coprocessor mode, with only one CPU per node used

for computation and without any use of the double

FPU. Load balancing and autotuning of guard zones

R. S. GERMAIN ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

450

Figure 2

(a) Scaling of contributions to the total timestep using the Ewald method in a 5,289-atom -hairpin system. The contributions shown are
non-overlapping, and the error bars indicate the spread in values (minimum to maximum) over the entire set of nodes and the timesteps used
to compute the average values. The major components of the timestep include the real-space (RS) and k-space (KS) nonbonded calcula-
tions, the floating-point reduction and broadcast implemented on the BG/L torus network (ReduceForces), and the fixed-point
All_Broadcast implemented on the collective network (GlobalizePositions). The other, much smaller, contributions to the total
timestep include the Shake and Rattle calculations that constrain bond lengths in the water molecules and for bonds connecting selected
atoms in the peptide, the velocity Verlet integrator, and the bonded force calculations. (b) Scaling of contributions to the k-space portion of
the total timestep—“Nonbond (KS)” in 2(a)—using the Ewald method in a 5,289-atom -hairpin system. The “Exp. factors” label refers to
the amount of time required to compute the exponential factors that are the starting point for the Ewald technique. The AllReduce
operation is a floating-point reduction carried out on the torus network, while the LocalReduce operation is the partial reduction that takes
place locally before the AllReduce operation is carried out. The Compute Forces operation comprises the local operations required to
compute the k-space-related forces on each particle from the structure factors S(k) and other local quantities. (c) Scaling of contributions to
the total timestep using the P3ME method in a 5,289-atom -hairpin system. The structure of this figure is the same as that of Figure 2(a).
(d) Scaling of contributions to the k-space portion of the timestep in a 5,289-atom -hairpin system. This breakdown shows the breakdown
of the total Nonbond (KS) time into its components, including the times for the forward and inverse FFTs. Other contributions include the
meshing of the charges (P3ME Assign Charge), the convolution (P3ME Convolve), and the computation of the k-space contribution to
the electrostatic force on a particle at its actual position (P3ME Interpolate).

�

�
�

�

104

102 103 104

105

106

107

108

109

10
104

105

106

107

108

102 103 10410

102 103 10410 102 103 10410
104

105

106

107

108

109

104

105

106

107

108

Shake
WaterSPCRattle
WaterSPCShake
UpdatePosition
UpdateVelocity
Bonded forces

Node count
(a)

Node count
(c)

Node count
(b)

Node count
(d)

Total time
Nonbond (RS)
Nonbond (KS)
ReduceForces
GlobalizePositions
Rattle

Shake
WaterSPCRattle
WaterSPCShake
UpdatePosition
UpdateVelocity
Bonded forces

Total time
Nonbond (RS)
Nonbond (KS)
ReduceForces
GlobalizePositions
Rattle

Nonbond (KS)
AllReduce S(k)
Compute Forces

LocalReduce S(k)
Exp. factors

Nonbond (KS)
Forward FFT
Inverse FFT

P3ME Assign Charge
P3ME Convolve
P3ME Interpolate

E
la

ps
ed

 ti
m

e
 (

ns
)

E
la

ps
ed

 ti
m

e
 (

ns
)

E
la

ps
ed

 ti
m

e
 (

ns
)

E
la

ps
ed

 ti
m

e
 (

ns
)

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 R. S. GERMAIN ET AL.

451

for Verlet lists take place during the first few hundred

timesteps of the simulation, so our data is obtained by

running the simulation for 1,300 timesteps and using the

last 100 steps to compute the averages for the CPU times.

The component contributions to the total execution time

can be measured using the trace tool described in the

section above on application-level tracing.

For the Ewald method, a plot of the major

contributions is shown in Figure 2(a). The k-space

portion of the nonbonded interactions, the portion of the

calculation that is different in the P3ME method and in

the Ewald method, is further broken down in Figure 2(b).

The AllReduce is the communication step that performs

the global reduction of data over all of the processors to

compute the global structure factors S(k). The cost of this

communication is essentially independent of the number

of processors and is the only nonscalable part that is

specific to this Ewald implementation (other nonscalable

components are common to both the current Ewald and

P3ME implementations). This is the contribution that

limits the performance of the reciprocal space Ewald

computations at high node counts.

Figure 2(c) shows the parallel performance of the Blue

Matter application using the P3ME technique for

calculating the long-range electrostatic forces. The

data shown in the figure was obtained for a molecular

system comprising a solvated b-hairpin (peptide chain)

containing 5,289 atoms. In the breakdown of the total

time per timestep, the major contributors are, once again,

the real space and k-space nonbond calculations; at the

higher node counts, the contribution of the floating-point

collective (ReduceForces) becomes significant. We

should note that the initial implementation of the

collective used for the GlobalizePositions operation

was on the torus and had about the same performance

as the ReduceForces operation. The utilization of

the hardware collective network to implement the

GlobalizePositions operation resulted in significant

performance improvement at high node counts, and we

expect that eventual optimization of the floating-point

collective operation used for the ReduceForces operation

will yield additional improvements.

Figure 2(d), a more detailed view of the k-space

contributions, shows that the forward and inverse FFTs

are the dominant contributors, and both scale well up

through 512 nodes. At 1,024 nodes, the forward FFT

displays a slowdown, while the inverse FFT continues

to scale. We believe that this is an artifact caused by

differences in data alignment and/or an issue with the

current MPI driver rather than a fundamental limitation

of this P3ME implementation. The FFT itself would

ideally be limited only by the bisectional bandwidth of the

machine, which scales as p2/3, but in reality, as the node

count becomes very large, the message sizes in the FFT

decrease to the point at which hardware and software

latencies become significant [6].

We also need to discuss the contribution labeled

P3ME Assign Charge in Figure 2(d). While its

contribution is relatively small, its scaling is significantly

worse than other parts of the P3ME reciprocal space

calculation. The reason is fundamental to the P3ME

algorithm itself, because each charge is distributed over

several surrounding nodes on the FFT mesh. When

this mesh is distributed over more processors, each

particle begins to affect more processors, and more

communication and/or replicated computation is

required. While the scaling is an issue, we believe

that further optimization of the P3ME Assign

Charge operation is possible.

Finally, Figure 3 compares the performance of the

Ewald and P3ME methods on the two systems described

above. In the current implementations, the results on the

smaller system are comparable, while on the larger

system, the P3ME technique still has a significant

advantage, although that advantage appears to decrease

as the node count increases. At the higher node counts,

the P3ME Assign Charge operation is taking a significant

fraction of the k-space nonbond time and will be a target

for further optimization.

It should also be noted that the compilation flags used

for the two sizes of systems differed. We were forced to

use -O21 for the compilations on the larger system in

�

Figure 3

Execution time per timestep as a function of node count for Blue
Matter using the Ewald summation technique compared with using
the P3ME method. Data for two systems, a solvated -hairpin
comprising 5,239 atoms and a membrane/protein system compris-
ing 43,222 atoms, is shown. The scaling data shown was obtained
using executables compiled with –O3 –g for the 5,289-atom system
and with –O2 –g for the 43,222-atom system (because of compiler
problems).

107

108

109

1010

102 103 10410
Node count

E
la

ps
ed

 ti
m

e
 (

ns
)

Ewald 43K
P3ME 43K
Ewald 5K
P3ME 5K

1-02, -03 are compiler options that control how aggressively the code is optimized
(sometimes the optimizations can change the order of operations or possibly the
semantics of the code).

R. S. GERMAIN ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

452

this scaling study, while we were able to use -O3 for

the smaller system. The absolute performance on the

43,222-atom system when -O3 can be used is about

100 milliseconds per timestep (107 ns) at 512 nodes,

about twice as fast as the performance measured with

-O2 shown in Figure 3.

As we consider alternative parallel decomposition

schemes, it is possible to eliminate the dependency that

both methods share on the nonscalable communications

operations, position globalization, and global force

reduction. However, the global floating-point reduction

required by the Ewald technique to compute the structure

factors S(q) does not appear to be easily dispensed with,

and this may handicap the Ewald technique in future

comparisons. One should note that the replication of

position and force data on each node also limits the size

of the molecular system that can be handled, since the

memory footprint required for the replicated data is

6N sizeof(double), where N is the number of particles.

Summary and future directions
We have presented a snapshot of early performance

results on a molecular dynamics application, Blue Matter,

that has been developed as an adjunct to the Blue Gene

science mission [1]. Using lightweight trace points, we are

able to measure the scalability of individual contributions

to the execution time of the code, which has allowed us

to identify key MPI collective operations whose further

optimization will improve both absolute performance

and scalability.

As a first step in exploring algorithmic alternatives for

the efficient evaluation of electrostatic interactions on

massively parallel computers, we have compared the

performance of our implementations of Ewald and the

P3ME techniques on two system sizes. At large node

counts, the performance of the Ewald technique is

comparable to that of P3ME for the smaller system size,

while, as expected, P3ME shows a significant advantage

for larger system sizes. Both of these approaches

will benefit from additional improvements in the

implementation of the MPI floating-point reduction

collective. Our planned explorations include alternative

parallel decompositions to reduce or eliminate the

nonscalable collective operations currently in use. Further

explorations of algorithmic alternatives for the long-

range interactions may include the fast multipole method

[17] as applied to periodic systems [18]. The results

reported here were taken in a mode in which only one

of the two PowerPC 440 CPUs on each node were used

for computation and without any attempt to have the

compiler generate code for the double floating-point unit.

Significant improvements in the absolute performance of

the compute-intensive contributions to the total timestep

duration should be obtainable when both CPUs can be

used and as the compiler code generation for the double

floating-point unit improves.

Acknowledgments
We acknowledge the contributions of others who have

participated in the development of the Blue Matter

code, including Michael Pitman, Jed Pitera, Yuk Sham,

William Swope, and Ruhong Zhou. We also acknowledge

the contributions of the Blue Gene/L hardware and

system software teams whose efforts and assistance made

it possible for us to use the Blue Gene/L prototype

hardware.

*Trademark or registered trademark of International Business
Machines Corporation.

References
1. F. Allen, G. Almasi, W. Andreoni, D. Beece, B. J. Berne, A.

Bright, J. Brunheroto, C. Cascaval, J. Castanos, P. Coteus,
P. Crumley, A. Curioni, M. Denneau, W. Donath, M.
Eleftheriou, B. Fitch, B. Fleischer, C. J. Georgiou, R.
Germain, M. Giampapa, D. Gresh, M. Gupta, R. Haring,
H. Ho, P. Hochschild, S. Hummel, T. Jonas, D. Lieber, G.
Martyna, K. Maturu, J. Moreira, D. Newns, M. Newton,
R. Philhower, T. Picunko, J. Pitera, M. Pitman, R. Rand,
A. Royyuru, V. Salapura, A. Sanomiya, R. Shah, Y. Sham,
S. Singh, M. Snir, F. Suits, R. Swetz, W. C. Swope, N.
Vishnumurthy, T. J. C. Ward, H. Warren, and R. Zhou,
‘‘Blue Gene: A Vision for Protein Science Using a Petaflop
Supercomputer,’’ IBM Syst. J. 40, No. 2, 310–327 (2001).

2. B. G. Fitch, R. S. Germain, M. Mendell, J. Pitera, M. Pitman,
A. Rayshubskiy, Y. Sham, F. Suits, W. Swope, T. J. C. Ward,
Y. Zhestkov, and R. Zhou, ‘‘Blue Matter, An Application
Framework for Molecular Simulation on Blue Gene,’’ J.
Parallel & Distr. Computing 63, 759–773 (2003).

3. W. C. Swope, J. W. Pitera, F. Suits, M. Pitman, M.
Eleftheriou, B. G. Fitch, R. S. Germain, A. Rayshubskiy,
T. J. C. Ward, Y. Zhestkov, and R. Zhou, ‘‘Describing Protein
Folding Kinetics by Molecular Dynamics Simulations. 2.
Example Applications to Alanine Dipeptide and a b-Hairpin
Peptide,’’ J. Phys. Chem. B 108, No. 21, 6582–6594 (2004).

4. B. G. Fitch and M. E. Giampapa, ‘‘The Vulcan Operating
Environment: A Brief Overview and Status Report,’’ Parallel
Supercomputing in Atmospheric Science, G.-R. Hoffman and
T. Kauranne, Eds., World Scientific Publishing Co., Inc.,
Riveredge, NJ, 1993, p. 130.

5. A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus,
M. E. Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke,
G. V. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D.
Steinmacher-Burow, T. Takken, and P. Vranas, ‘‘Overview of
the Blue Gene/L System Architecture,’’ IBM J. Res. & Dev. 49,
No. 2/3, 195–212 (2005, this issue).

6. M. Eleftheriou, B. G. Fitch, A. Rayshubskiy, T. J. C. Ward,
and R. S. Germain, ‘‘Scalable Framework for 3D FFTs on the
Blue Gene/L Supercomputer: Implementation and Early
Performance Measurements,’’ IBM J. Res. & Dev. 49, No. 2/3,
457–464 (2005, this issue).

7. T. P. Straatsma, M. Philippopoulos, and J. A. McCammon,
‘‘NWChem: Exploiting Parallelism in Molecular Simulations,’’
Computer Phys. Commun. 128, No. 1/2, 377–385 (2000).

8. L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy,
N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, and
K. Schulten, ‘‘NAMD2: Greater Scalability for Parallel
Molecular Dynamics,’’ J. Comput. Phys. 151, No. 1, 283–312
(1999).

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 R. S. GERMAIN ET AL.

453

9. S. J. Plimpton and B. A. Hendrickson, ‘‘A New Parallel
Method for Molecular-Dynamics Simulation of
Macromolecular Systems,’’ J. Comput. Chem. 17, No. 3,
326–337 (1996).

10. P. P. Ewald, ‘‘Evaluation of Optical and Electrostatic Lattice
Potentials,’’ Ann. Phys. Leipzig 64, 253–287 (1921).

11. M. Deserno and C. Holm, ‘‘How to Mesh Up Ewald Sums.
II. An Accurate Error Estimate for the Particle–Particle–
Particle-Mesh Algorithm,’’ J. Chem. Phys. 109, No. 18, 7678–
7693 (November 1998).

12. H. G. Petersen, ‘‘Accuracy and Efficiency of the Particle Mesh
Ewald Method,’’ J. Chem. Phys. 103, No. 9, 3668–3679
(September 1995).

13. J. Kolafa and J. W. Perram, ‘‘Cutoff Errors in the Ewald
Summation Formulae for Point Charge Systems,’’ Molec.
Simul. 9, 351–368 (1992).

14. W. C. Swope, H. C. Andersen, P. H. Berens, and K. R.
Wilson, ‘‘A Computer Simulation Method for the Calculation
of Equilibrium Constants for the Formation of Physical
Clusters of Molecules: Application to Small Water Clusters,’’
J. Chem. Phys. 76, 637–649 (1982).

15. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives,
‘‘Development and Testing of the OPLS All-Atom Force Field
on Conformational Energetics and Properties of Organic
Liquids,’’ J. Amer. Chem. Soc. 118, 11225–11236 (1996).

16. A. D. MacKerell, Jr., B. Brooks, C. L. Brooks III, L. Nilsson,
B. Roux, Y. Won, and M. Karplus, ‘‘CHARMM: The Energy
Function and Its Parameterization with an Overview of the
Program,’’ The Encyclopedia of Computational Chemistry, Vol.
1, P. v. R. Schleyer et al., Eds., John Wiley & Sons, Berne,
Switzerland, 1998, pp. 271–277.

17. L. Greengard and V. Rokhlin, ‘‘A Fast Algorithm for Particle
Simulations,’’ J. Comput. Phys. 73, No. 2, 325–348 (December
1987).

18. F. Figueirido, R. M. Levy, R. Zhou, and B. J. Berne, ‘‘Large
Scale Simulation of Macromolecules in Solution: Combining
the Period Fast Multipole Method with Multiple Time Step
Integrators,’’ J. Chem. Phys. 106, No. 23, 9835–9849 (June
1997).

Received July 29, 2004; accepted for publication
October 21,

Robert S. Germain IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (rgermain@us.ibm.com). Dr. Germain manages the
Biomolecular Dynamics and Scalable Modeling Group within the
Computational Biology Center at the IBM Thomas J. Watson
Research Center. He received his A.B. degree in physics from
Princeton University in 1982 and his M.S. and Ph.D. degrees in
physics from Cornell University. He joined the IBM Thomas J.
Watson Research Center as a Research Staff Member in the
Physical Sciences Department after receiving his doctorate
in 1989, and later the VLSI/Scalable Parallel Systems Packaging
Department. Dr. Germain was project leader, from 1995 to 1998,
for the development of a large-scale fingerprint identification
system using an indexing scheme (FLASH) developed at IBM
Research. He has been responsible for the science and associated
application portions of the Blue Gene project since 2000. His
current research interests include the parallel implementation
of algorithms for high-performance scientific computing, the
development of new programming models for parallel computing,
and applications of high-performance computing to challenging
scientific problems in computational biology. Dr. Germain is a
member of the IEEE and the American Physical Society.

Yuriy Zhestkov IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (yuriyz@us.ibm.com). Dr. Zhestkov is a Research Staff
Member in the Blue Gene Application Development Group. He
received an M.S. degree (with honors) in applied mathematics and
physics from the Moscow Physical and Technical Institute (MPTI),
Dolgoprudnyi Moscow region, in 1991. He then worked at the
Joint Institute for Nuclear Research in Dubna, Moscow region.
In 2001 he received his Ph.D. degree in physics from Columbia
University. He then joined the IBM Thomas J. Watson Research
Center, primarily working on a highly scalable parallel Blue Matter
application for molecular dynamics simulations, targeting the Blue
Gene/L supercomputer. Dr. Zhestkov’s areas of interest include
long-range electrostatics methods in periodic boundary conditions,
pressure and temperature control, time-reversible algorithms, and
multiple timestep integrators.

Maria Eleftheriou IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (mariae@us.ibm.com). Dr. Eleftheriou is a Research Staff
Member at the IBM Thomas J. Watson Research Center. She
received a B.S. degree (with honors) in physics from Saint Joseph’s
University, and an M.S. degree in engineering and a Ph.D. degree
in theoretical and computational chemistry, both from Brown
University, in 1995 and 1999, respectively. She subsequently
worked as a Postdoctoral Fellow in the Columbia Center for
Biomolecular Simulation at Columbia University. Since joining
IBM, she has worked primarily on the Blue Gene project. Dr.
Eleftheriou has contributed, in particular, to the design and
implementation of parallel algorithms and parallel programming
models, and studied the performance of parallel scientific
applications for the Blue Gene/L architecture.

Aleksandr Rayshubskiy IBM Research Division, Thomas
J. Watson Research Center, Yorktown Heights, New York 10598
(arayshu@us.ibm.com). Mr. Rayshubskiy received an M.E. degree
in computer science from Cornell University in 2002. He worked in
the Biomolecular Dynamics and Scalable Modeling Group within
the Computational Biology Center at the IBM Thomas J. Watson

R. S. GERMAIN ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

454

2004; Internet publication April 12, 2005

Research Center in 2000 as an intern, joining the group as a full-
time software engineer in 2003. Mr. Rayshubskiy worked primarily
on the development of the Blue Matter molecular dynamics
package. His current research interests include parallel
applications, load balancing, performance tuning, and lower-
level hardware interfaces to the application.

Frank Suits IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (suits@us.ibm.com). Dr. Suits is a member of the
Biomolecular Dynamics and Scalable Modeling Group within the
Computational Biology Center at the IBM Thomas J. Watson
Research Center. This group is responsible for the software and
science involved in the protein simulations that are integral to the
Blue Gene project. Although his degree is in optical physics, he has
worked on a wide variety of projects at the IBM Thomas J. Watson
Research Center, including optical storage, magnetic storage
materials, scientific visualization, and queuing systems. At present,
Dr. Suits is focusing on the analysis of the protein and membrane
simulations currently running on BG/L.

T. J. Christopher Ward IBM United Kingdom Limited,
Hursley House, Hursley Park, Winchester, Hants SO21 2JN,
England (tjcw@uk.ibm.com). Mr. Ward graduated from
Cambridge University in 1982 with a first-class honors degree in
electrical engineering. He has worked for IBM in various hardware
and software development roles, always finding ways of improving
performance of products and processes. He was a member of
the IBM Computational Biology Center at the IBM Thomas J.
Watson Research Center from 2001 to 2004, arranging for the Blue
Gene/L hardware and compilers and the Blue Matter protein
folding application to work effectively together and achieve the
performance entitlement. Mr. Ward currently works for IBM
Hursley as part of the IBM Center for Business Optimization,
enabling customers of IBM to take advantage of the opportunities
afforded by the rapidly decreasing cost of supercomputing services.

Blake G. Fitch IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (bgf@us.ibm.com). Mr. Fitch joined the IBM Thomas J.
Watson Research Center in 1985 as a student. He received his B.S.
degree in computer science from Antioch College in 1987 and
remained at IBM to pursue interests in parallel systems. He joined
the Scalable Parallel Systems Group in 1990, contributing to
research and development that culminated in the IBM scalable
parallel system (SP*) product. Mr. Fitch’s research interests have
focused on application frameworks and programming models
suitable for production parallel computing environments. Practical
application of this work includes contributions to the transputer-
based control system for the IBM CMOS S/390* mainframes (IBM
Boeblingen, Germany, 1994) and the architecture of the IBM
Automatic Fingerprint Identification System parallel application
(IBM Hursley, UK, 1996). Mr. Fitch joined the Blue Gene project
in 1999 as the application architect for Blue Matter, a scalable
molecular dynamics package.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 R. S. GERMAIN ET AL.

455

