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Abstract

This paper describes a novel decomposition for N-body simulations that
has enabled Blue Matter to approach the effective limits of concurrency
for molecular dynamics using particle-mesh (FFT-based) methods for han-
dling electrostatic interactions. Using this decomposition, Blue Matter run-
ning on Blue Gene/L has achieved simulation rates in excess of 1000 time
steps per second and demonstrated significant speed-ups to O(1) atom per
node. Blue Matter employs a Communicating Sequential Process (CSP) style
model with application communication state machines compiled to hard-
ware interfaces. The scalability achieved has enabled methodologically rig-
orous biomolecular simulations on biologically interesting systems, such as
membrane-bound proteins, whose time scales dwarf previous work on those
systems. Further scaling improvements will require exploration of alternative
algorithms for treating the long range electrostatics.

1 Introduction

The ability of biomolecular simulations to make contact with experimental data
is directly related to the time-scale accessible to the simulation. This necessitates
strong scaling of a fixed size N-body problem, typically a system containing tens of
thousands to hundreds of thousands of particles, onto a massively parallel computer
with thousands or tens of thousands of nodes. For example, to achieve a simula-
tion rate of one microsecond every two weeks requires a single time step to com-
plete 1.2 milliseconds, or fewer than one million machine cycles on Blue Gene/L.
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Continuing to improve overall time-to-solution for these N-body simulations with
correct treatment of long range electrostatic interactions while decreasing the ratio
of atoms per node to on the order of one atom per node is a tremendous challenge
for a parallel application. Addressing this challenge requires the exploration of
a number of alternatives for both algorithms and communications programming
models.

Success in meeting this challenge enables detailed atomistic simulations of bi-
ologically interesting systems at time-scales and in ensemble sizes that were pre-
viously unattainable including 26 hundred nanosecond trajectories of a G-Protein
Coupled Receptor (GPCR), rhodopsin, in a realistic membrane environment[13]
and multiple micro-second scale simulations of that system and others. Further-
more, since the path to increased capability now seems to require increased con-
currency, even working with larger systems with hundreds of thousands of atoms
may require scalability to relatively small ratios of atoms per node. While there
have been some theoretical studies of scaling in this limit[19], this work repre-
sents the first implementation of classical biomolecular simulation to demonstrate
scaling to this degree.

1.1 Background on Blue Matter

The Blue Matter effort was undertaken for two reasons. First, to address one the
primary goals of IBM’s Blue Gene project[1]: To use the unprecedented computa-
tional resource developed during the course of the project to attack grand challenge
life sciences problems such as advancing our understanding of biologically impor-
tant processes, in particular, the mechanisms behind protein folding. Second, to
provide a concrete context for the exploration of the algorithmic techniques and
programming models required to exploit the massive parallelism of the Blue Gene
architecture.

2 Classical Biomolecular Simulation

2.1 N-body Problem, Long Range Electrostatics

Classical biomolecular simulation includes both Monte Carlo and Molecular Dynamics[8].
The focus of our work has been on Molecular Dynamics although the Replica Ex-
change or Parallel Tempering Method[18] which combines Molecular Dynamics
with Monte Carlo-style moves has been implemented in Blue Matter as well[4].
Classical molecular dynamics is an N-body problem in which the evolution of the
system is computed by numerical integration of the equations of motion. At each
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time step, forces on particles are computed; and then the equations of motion are
integrated to update the velocities and positions of the particles.

Because models of proteins have components with large partial charges, the
long ranged electrostatic forces cannot be approximated simply by cutting off force
interactions between pairs of particles further apart than some cut-off distance. The
most commonly used techniques for handling these long range interactions are
based on the Ewald summation method and particle mesh techniques that divide
the electrostatic force evaluation into a real-space portion that can be approximated
by a finite range cut-off and a reciprocal space portion that involves a convolution
of the charge distribution with an interaction kernel. This convolution is evaluated
using a Fast Fourier Transform (FFT) method in the Particle-Particle-Particle-Mesh
(P3ME) technique[2] used by Blue Matter. In this case the O(n2) dependence on
particle number is reduced to O(n log n). The global data dependency for each
time-step is imposed by the convolution step with the evaluation of the three di-
mensional FFTs.

We describe molecular dynamics as comprised of four major modules:

• real-space non-bonded (finite range pair interactions)

• k-space (FFT-based)

• bonded (graph-based)

• integration (per particle)

2.2 Inherent Concurrency of Molecular Dynamics

Before attempting to scale an algorithm onto many thousands of nodes, it is useful
to consider how much concurrency is inherent in various components of that algo-
rithm. An example of such an approach is pictured in Figure 1 for the non-bonded
forces in a Molecular Dynamics simulation using the P3ME method to treat the
long-range electrostatic forces. One can afford a lack of concurrency in compo-
nents that impose very little computation or communication burden, but eventually
even these will become bottlenecks (Amdahl’s Law).

3 Description of Parallel Decomposition/Load Balancing

Our explorations of parallel decompositions have included replicated data meth-
ods that leveraged the hardware facilities of Blue Gene/L to globalize and reduce
data structures[5, 11] and volume decompositions. Prior to the present work, the
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most recent volume decomposition, which we will refer to as V4, used geomet-
ric criteria to determine where the real-space non-bonded interaction between two
particles would be computed, namely on whichever node contained the point half-
way between the two particles. This provided a large number of distinct units of
the computational burden that could be distributed by partitioning space using an
Optimal Recursive Bisection (ORB) scheme[7, 10, 6]. The implementation of this
method entailed the broadcast of a particle’s position to a sphere with radius of half
a cut-off distance. This also provided the particle positions required by the k-space
and bonded force modules.

In contrast to the purely geometric approach of V4, the method described here,
referred to as V5, uses geometry primarily as heuristic to prime the set-based op-
timization process that follows. Where V4 managed data distribution (of particle
positions) and reduction (of forces) via a data “push” and caching module, V5 spe-
cializes communications between the integrator module and the other three force
computation modules described above. Where the V4 push/cache method required
a distinct communications phase, V5 allows overlap of one module’s communica-
tion and/or computation with another module’s communication and/or computa-
tion. On Blue Gene/L, which has two processors per node, modules are scheduled
to cores to maximize overlap. Currently the scheduling is static and we place the
longest-running module on its own core.

With Blue Matter V5, a programming model resembling Communicating Se-
quential Processes (CSP) has evolved. Although still rough in implementation, it
is clear that the four main modules in Blue Matter are connected by data channels
defined by application specific protocols[14]. This model helps in two ways. First
it enables the application to provide as much knowledge as possible to minimize
communication overhead. Second, integrated application/communication state ma-
chines can be compiled directly to hardware interfaces further reducing overheads.

For each time step, after the integration module has run, a new set of atom
positions are made available to each of the force-generating modules to be sent to
the nodes where work has been distributed. Each force-generating module returns
force partial sums to the integration module at the end of an operational phase.
The force-generating modules manage work distribution using an initialization or
planning phase to configure structures that will be stable for many iterations as
well as dynamic activities that occur more frequently to manage the diffusion of
particles. Periodically, the lists used to manage the pair interactions that must be
computed (the Verlet lists), must be regenerated because of particle diffusion. Less
frequently, diffusion also requires the assignment of particles to nodes to be up-
dated. Outside of these special time steps, essentially all of the data communicated
between nodes is consumed in useful computational work.
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Figure 2: Spatial decomposition showing the “surface sets” for two nodes superim-
posed on the spatial decomposition of the domain onto all nodes (two-dimensional
view for simplicity). The surface sets are comprised of nodes containing portions
of the surface in simulation space defined by the set of points which are at distance
Rb from the surface of any volume element assigned to Node A or Node B. The
two surface sets are shown in two types of hatching with cross-hatching used to in-
dicate “surface intersection set”. The broadcast radius Rb > Rc/2 where Rc is the
cutoff radius. The interaction between a particle stored on Node A and a particle
stored on Node B can be computed on any node in the surface intersection set (the
nodes with cross-hatching).
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3.1 Real Space Non-bond

The real space non-bond (RSNB) module must distribute particle pair interactions
so that computational load is balanced and communication is minimized. V5 uses
a set-based optimization scheme primed with a spatial heuristic. During initializa-
tion, a node is assigned to compute any interaction for each pair of nodes which
could home particles that are within cutoff. These node interaction assignments
define the communication that is required. The V5 algorithm optimizes for both
load balance and maximal reuse of communicated data. In the discussion that fol-
lows we will use node and node volume (the volume element of simulation space
“owned” by that node) interchangeably.

The heuristic used by V5 to prime a set-based optimizer is based on the obser-
vation that for a given cutoff distance, each pair of nodes can define a set of nodes
that could compute their interactions by those nodes which are half the cutoff dis-
tance from each member of the pair. In practice, for each node a “surface set” of
nodes is defined as the nodes which intersect a surface a half cutoff distance away
from the originating node volume’s surface. For each pair of nodes within cutoff
distance, a “surface intersection set” is defined as the intersection of the node pair’s
surface sets as shown in Figure 2.

The interactions between each pair of nodes could be assigned to any member
of the surface intersection set for that pair. Load balance for RSNB computations
can be achieved by assigning pair interactions to surface intersection sets in an
optimized fashion. The optimizer will have the complete intersection set for each
node pair from which to assign the pair computational load.

As fixed size simulations are scaled to higher node counts, surface sets become
larger and correspondingly, the surface intersection sets become larger. A balance
can be struck between load balance and communication cost by reducing the num-
ber of nodes in each surface set if one ensures at least one node in each surface
intersection set required to cover in-range node pairs.

In order to further reduce the communication costs, V5 creates a “sparse sur-
face set” via the following algorithm. Each node is considered to have an empty
initial sparse surface set. For every pair of interacting nodes, the surface intersec-
tion set is generated. These sets are then sorted by the number of nodes in each.
Starting with those surface intersection sets with the fewest members, begin adding
to the sparse surface sets. When a surface intersection set has only one member,
both nodes with intersecting surface sets must add that node to their sparse surface
sets. In general, the following selection method is used for each node pair with a
non null surface intersection set:

1. If one of the members of the surface intersection set already appears in the
sparse surface set of both nodes in the node pair, the pairs interactions are
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Sparse Surface Node Count
BG/L Partition Dimension Surface Node Count Avg. Min. Max

8 × 8 × 8 42 22 19 24
8 × 8 × 16 58 27 24 29
8 × 16 × 16 90 38 34 40
16 × 16 × 16 122 50 46 52
8 × 32 × 16 122 51 47 53
16 × 32 × 16 162 65 61 67

Table 1: This table shows the results of the algorithm described in the text to reduce
the number of communication partners required by a node in the real-space non-
bond module. The reduction from the Surface Node count in the second column
to the Sparse Surface Node count characterized in the rightmost three columns is
significant and becomes more pronounced as the partition size increases.

covered—do not add to sparse surface sets.

2. If none of the members of the surface intersection set appears in either sparse
surface set for the node pair, choose the member that currently appears in the
smallest number of sparse surface sets.

3. If members of the surface intersection set appear in either one of the node
pairs sparse surface sets (but not both) then the member which currently
appears in the smallest number of sparse surface sets is added to the other
nodes sparse surface set.

The result of this process is a sparse surface set for each node which is guaranteed
to have at least a one member intersection set with the sparse surface set of each
node within cutoff distance. Measurements of the reduction in node count achieved
by this algorithm are provided in Table 1. Using the sparse surface sets, for each
node within range a sparse surface intersection set is created. Load balance is
achieved by optimizing the assignment of computational burden within the options
defined by each node pair’s sparse surface intersection set. This scheme has the
advantage that the granularity with which load can be manipulated decreases as
the number of nodes increases (for a fixed size system).

3.2 K-space Module

The V5 k-space module has a distribution function set by a naturally mapped fully
distributed FFT[3]. The FFT represents the bulk of the communication time of
P3ME, but additional communication is required to send atom position data to
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those nodes where they will contribute to FFT mesh points and force partial sums
resulting from contributions of those mesh points must be returned to the node
owning the originating atom at the end of the phase. Since atoms diffuse during the
simulation, an atom may contribute to a different set of FFT mesh points during
each time step, requiring its position to be sent to different nodes. Ideally, atom
positions will only be sent to those nodes managing the appropriate mesh points.
However, this results in a fresh set of communicating node pairs on each timestep.

The communication protocol designed for the k-space module on Blue Gene/L
takes advantage of the hardware global collective network[9, 12]. When the k-
space module begins, it receives new position values from the integration module
and for each, determines the list of target nodes owning relevant FFT mesh points.
Each node then enters a loop sending positions via the hardware torus network to
target nodes and receiving positions from other sources. As each node completes
sending all local positions their targets, it contributes a value of the number of torus
packets sent to an asynchronous hardware supported integer reduction. The nodes
then continue to receive hardware torus packets while polling the global reduction
hardware. The first time a global integer reduction completes, each node knows the
total number of packets sent. Subsequently and until the receive phase is done, each
time an integer reduction completes, each node contributes the number of torus
packets received to the next reduction. The phase ends when the global number of
torus packets received equals the global number of packets sent. The incremental
cost of this method of terminating the communication phase is approximately that
of a single integer all-reduce on the global collective network.

3.3 Bonded Force Module

The V5 bonded force module is responsible for executing force generating com-
putations on sets of atoms that are connected by covalent bonds (representable as
graphs). Because atoms are migrated through the spatial decomposition without
regard to these graph based interactions, after atom migration each node with an
atom that participates in graph operations that are not fully local must discover
which nodes to exchange data with in support of these operations. Since graph
based operations can involve up to four atoms and three bonds, the spatial range of
nodes that share graph based computations is limited. When atoms are migrated
to maintain the spatial decomposition, positions are sent to all nodes which might
share a graph based operation. The majority of this set will not share an interaction
and this knowledge is preserved for future bonded module communication phases
until the next migration timestep. The actual number of nodes exchanging data on
non-migration timesteps is the exact number required by the assignment of graph
based operations typically an order of magnitude fewer than are in range.
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Time/time-step (milliseconds)
Total Px Py Pz Hairpin SOPE Rhodopsin ApoA1

512 8 8 8 2.24 6.22 17.51 38.42
1024 8 8 16 1.44 3.89 9.47 18.95
2048 8 16 16 1.00 2.45 5.07 9.96
4096 16 16 16 0.82 1.60 3.10 5.43
4096 8 32 16 1.11 2.10 3.21 5.39
8192 16 32 16 1.49 2.16 3.14

16384 32 32 16 1.66 1.87 2.08

Table 2: Performance in time/time step as a function of node count (and partition
geometry) for β-Hairpin (5239 atoms), SOPE (13,758 atoms), Rhodopsin (43,222
atoms), and ApoA (92,224)

4 Benchmarking Results

All of the Blue Matter benchmarking data for V5 presented in Table 2 and included
in Figure 3 was taken by averaging 180 time steps taken at the end of a 1000 time
step run. Figure 3 plots the computational throughput in time steps per second
versus the number of atoms per node. Plotting the data as a function of atoms per
node provides some degree of normalization for system size and one can observe
that the scalability plots at larger values of atoms/node (lower node counts) seem
to lie on a “universal” curve. The is true in the limit that the real-space non-bonded
interactions are the dominant contribution to the iteration time since the number of
these pair interactions will scale with system size since they are truncated beyond
the cutoff distance.

The β-Hairpin runs used a 64 × 64 × 64 FFT mesh while all the other Blue
Matter runs used a 128 × 128 × 128 FFT mesh. All of the Blue Matter runs were
made out to the largest node counts supported by our current FFT implementation,
4096 for the systems using a 643 mesh and 16,384 nodes for the systems using a
1283 mesh. For comparison with the V5 results, Figure 3 includes the Blue Matter
V4 data on both SPI and MPI[6], published results on the ApoA1 system for ports
of NAMD to Blue Gene/L using both MPI and a lower level messaging layer[15],
and finally benchmarking data on the same system from 2002 for NAMD on the
PSC Lemieux system[16].

The V5 results show clear improvements over the V4 SPI benchmarks and in
some cases actually approach time/time-step values limited by the k-space (FFT)
module. The β-hairpin V5 results showed a 50% improvement over the V4 bench-
marks and achieved an iteration time of 0.83 milliseconds or only 581,000 cycles
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on Blue Gene/L. The SOPE system also showed significant improvement, which
was sufficient to expose the effects of overheads and caused speedup to end at 8192
nodes.

5 Summary and Conclusions

In this paper we have described a novel N-Body decomposition and a program-
ming model used in Blue Matter to scale classical molecular dynamics simulations
to the effective limits of parallel concurrency. This work has resulted in the demon-
stration of an unprecedented computation rate of over 1200 time steps per second
for a small β-Hairpin system on 4096 nodes and continued speed-up for larger
systems through 16,384 nodes. We have achieved this by removing nearly all non-
scaling overheads from our application decomposition and our communication col-
lectives. The time-to-solution achieved significantly contributes to increasing the
potential overlap between simulation and experiment and has already had signif-
icant impact in the area of biomolecular simulation of membrane-bound protein
systems[17, 13].

We have used very low level programming interfaces in this work; however, we
believe the communicating sequential processes represented by the four modules in
this program will allow similar results to be achieved via higher level programming
constructs. It will be necessary for these programming models to compile down to
nearly overhead free, integrated application/communication state machines. Where
possible, these state machines should make use of “planning”, or saved state to
reduce overhead. We have hand generated such dedicated state machines for 3D
FFT, neighborhood communications, all-to-all, and hardware reduce terminated
one-sided communications and in each case exceeded the performance of available
standard communication libraries.

This work suggests future research in two areas. First, although Blue Matter
V5 exploits the BG/L hardware to achieve speedups through the practical limits
of scalability of the 3D-FFT, it would be possible to improve efficiency at mod-
erate node counts by optimizing all the communications and computations using
techniques similar to ones described here for the real-space non-bond. We also
anticipate formalizing our CSP-like programming model using dedicated channel
protocols and light-weight processes compiled to hardware interfaces in our next
version of the code (V6).
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