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N-body simulations present some of the most interesting challenges
in the area of massively parallel computing, especially when the
object is to improve the time to solution for a fixed-size problem.
The Blue Matter molecular simulation framework was developed
specifically to address these challenges, to explore programming
models for massively parallel machine architectures in a concrete
context, and to support the scientific goals of the IBM Blue Genet
Project. This paper reviews the key issues involved in achieving
ultrastrong scaling of methodologically correct biomolecular
simulations, particularly the treatment of the long-range
electrostatic forces present in simulations of proteins in water and
membranes. Blue Matter computes these forces using the particle-
particle particle-mesh Ewald (P3ME) method, which breaks the
problem up into two pieces, one that requires the use of three-
dimensional fast Fourier transforms with global data dependencies
and another that involves computing interactions between pairs of
particles within a cutoff distance. We summarize our exploration of
the parallel decompositions used to compute these finite-ranged
interactions, describe some of the implementation details involved
in these decompositions, and present the evolution of strong-scaling
performance achieved over the course of this exploration, along
with evidence for the quality of simulation achieved.

Introduction

Numerical simulation of molecular systems can yield

unique insights into the details of the structure and

dynamics of biomolecules [1]. Such simulations are used

to sample the configurations assumed by the biomolecule

at a specified temperature and also to study the evolution

of the dynamical system under some specified set of

conditions. Among the many challenges facing the

biomolecular simulation community, the one that stresses

computer systems to the utmost is increasing the

timescales probed by simulation in order to better make

contact with physical experiment. Even sampling

techniques that do not themselves yield kinetic

information can benefit from an increased computation

rate for a single trajectory.

Classical biomolecular simulation includes both

Monte Carlo and molecular dynamics (MD) [2]. The focus

of our work has been on MD, although the replica

exchange or parallel temperingmethod [3], which combines

MDwithMonte Carlo-style moves, has been implemented

in Blue Matter as well [4]. Classical MD is an N-body

problem in which the evolution of the system is computed

by numerical integration of the classical equations of

motion. At each timestep, forces on particles are

computed, and then the equations of motion are

integrated to update the velocities and positions of the

particles. The forces on the particles can be classified as

follows:

Bonded forces—These forces act between covalently

bonded atoms and include bond stretches, angle bends,

and torsions.

Nonbonded forces—These forces act between all pairs

of particles and include the hard-core repulsion and

van der Waals interactions, which are typically modeled

by a Lennard–Jones 6-12 potential of the form
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as well as the electrostatic forces, which have a potential

energy of the form

�Copyright 2008 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied by any means or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 B. G. FITCH ET AL.

145

0018-8646/08/$5.00 ª 2008 IBM



V
e
ðr

ij
Þ ¼ q

i
� q

j
=r

ij
:

The forces induced by the Lennard–Jones potential

drop off rapidly with distance (varying as 1=r13
ij and 1=r7

ij)

and can be modeled as finite-ranged forces. The

electrostatic forces fall off much more slowly with

distance (varying as 1=r2
ij) and cannot be approximated

simply by neglecting interactions between pairs of

particles beyond some cutoff distance (even when a

smooth switching function is used) [5].

Ideally, a simulation would model a protein in an

infinite volume of water, but this is not practical. Instead,

the usual approach is to use periodic boundary conditions

so that the simulation models an infinite array of identical

cells that contain the biomolecules under study, along

with the water. This is generally preferred over simulating

a single finite box in a vacuum (or some dielectric)

because it eliminates the interface at the surface of the

simulation cell. The choice of simulation cell size is

important. If the cell is too large, unnecessary computations

will be done; too small, and the interactions between

biomolecules in different cells of the periodic array can

introduce artifacts. The most commonly used techniques

for handling the long-range interactions with periodic

boundary conditions are based on the Ewald summation

method and particle-mesh techniques that divide the

electrostatic force evaluation into a real-space portion

that can be approximated by a potential with a finite-

range cutoff and a reciprocal space portion that involves a

convolution of the charge distribution with an interaction

kernel [6–9]. This convolution is evaluated using a fast

Fourier transform (FFT) method in all of the particle-

mesh techniques, including the particle-particle particle-

mesh Ewald (P3ME) technique [6, 9] used by Blue

Matter. In this case, the O(n2) dependence on particle

number n is reduced to O(n log n). The evaluation of the

three-dimensional (3D) FFT and its inverse on every

timestep imposes a global data dependency on the

program. That is, the result depends on the position and

value of every charge in the system.

Various algorithmic techniques for increasing the

effective rate at which the kinetics of the systems evolve

have been explored, including kinetic acceleration

techniques [10, 11] and multiple timestepping algorithms

[12]. Issues such as the difficulty in defining appropriate

states between which transitions take place within a

simulation have raised concerns about the applicability of

the kinetic acceleration techniques to biomolecular

simulation. In our experience, even with a correct

splitting of the electrostatic forces [13], the use of multiple

timestepping leads to significantly larger drifts in the total

energy for constant particle number, volume, and energy

(NVE) simulations over that obtained using the velocity

Verlet integrator [14]. Our view is that direct kinetic

simulation is still the most reliable technique for accessing

dynamical information over a long timescale. This is in

spite of the challenge of scaling a fixed-size N-body

problem with some tens of thousands of particles onto a

parallel computer with many thousands of nodes (strong

scaling). The scale of this challenge can be envisioned by

considering that a simulation rate of 1 ls per 2 weeks

of wall-clock time requires each MD timestep to complete

within 1.2 ms, or fewer than one million processor clock

cycles on the IBM Blue Gene/L* machine when using a

timestep size of one femtosecond (10�15 seconds). Carrying

out such a long timescale simulation alsopotentially exposes

correctness issues with the implementation of MD in a

particular application. In this context, correctness refers to

the degree to which the numerically simulated trajectory is

representative of an actual trajectory within the model

(potential surface) used. For a constant energy simulation,

the size of both the short-term fluctuations and especially

the long-term drift in the energy can be used as indicators

of correctness or the lack thereof (see Reference [15]

and the references therein). Given the plateauing of

microprocessor clock speeds, any attempt to directly

access millisecond timescales would require completion of

each MD timestep in fewer than 10,000 cycles.

Massively parallel biomolecular simulation
Prior to the availability of the Blue Gene/L hardware

platform [16], the highest degree of strong scaling in the

published literature was that achieved by the Nanoscale

Molecular Dynamics (NAMD) [17] package, which

demonstrated continued speedup through about 60 atoms

per processor (and a time per timestep of about 15 ms

without multiple timestepping) on the Pittsburgh

Supercomputing Center Lemieux system using 1,536

processors [18]. At that time, the NAMD code used a

combination of volume and force decompositions [19, 20]

for the evaluation of the real-space forces. This made it

possible to create a large number of units of work—14

times the number of volume elements in the system, where

the dimension of each volume element was larger than a

cutoff radius—that could be distributed for load

balancing. Subsequently, the NAMD developers

incrementally increased the number of units of work

available by effectively splitting volume elements in half

along a selected axis or axes. Also, the parallel

decomposition used for the 3D FFT in the NAMD code

has thus far been a slab decomposition, which limits the

distribution of work for that module to N for an

N 3 N 3 N FFT. Much of the published scientific

work using NAMD has been on simulations of large

biomolecular systems rather than on smaller systems at

very long timescales.

The intellectual point of departure for much of the

work on highly scalable parallel decompositions of the
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N-body problem (the real-space portion, at least) is the

work of Hendrickson and Plimpton [19, 21], who

demonstrated a force decomposition method for which

the number of communicating partners of a single node

scales like Oð ffiffiffipp Þ; where p is the number of nodes.

Algorithms that attempted to achieve comparable

theoretical scaling behavior within a volume

decomposition have been published by Snir [22] and

Shaw [23], although, to our knowledge, no implementation

of either of these algorithms has been published.

Subsequent to the publication of our initial description

and performance characterization of the Blue Matter

Version 4 technique in September 2005 [24, 25], which is

described below, the D. E. Shaw team published a

description of essentially the same technique [26]. An

implementation of this algorithm on a commodity cluster

was described in a subsequent publication [27], but

performance was reported using aggressive

approximations that included the use of single-precision

arithmetic and multiple timestepping, with a reported

energy drift of 7 3 10�4 K=ns (100 times larger than the

worst energy drift measured on Blue Matter under

production or benchmarking conditions).

Blue Matter
Blue Matter has provided a concrete context in which to

explore algorithmic techniques and programming models

required to exploit massively parallel machine

architectures, such as the IBM Blue Gene*

supercomputer, as well as providing the capability

required to execute one of the primary goals of the IBM

Blue Gene Project [28]: to use the unprecedented

computational resource developed during the course of

the project to attack grand-challenge life-sciences

problems, such as advancing our understanding of

biologically important processes, in particular, the

mechanisms behind protein folding. Blue Matter has been

used in production by computational scientists on the

Blue Gene Project since 2003, initially on the IBM SP*

platform and later on the Blue Gene/L platform [29–36].

Through the use of the real-space parallelization

techniques, described below in the section ‘‘Parallel

decompositions,’’ and the highly scalable 3D FFT

developed as part of this project [37], the Blue Matter

MD code has demonstrated continued speedup through

approximately one atom per node on 16,384 Blue Gene/L

nodes and a time per timestep of less than 2 ms for a

43,222-atom solvated membrane protein system. All of

this was achieved with methodologically rigorous

methods for classical fixed-charge force fields. Our

success in meeting the challenges of strong scaling has

enabled detailed atomistic simulations of biologically

interesting systems at timescales and with ensemble sizes

that were previously unattainable, including 26

trajectories of 100 ns each of a G-protein-coupled

receptor (GPCR), rhodopsin, in a realistic membrane

environment [34] and multiple-microsecond-scale

simulations of that system [36] and others. Furthermore,

since the path to increased hardware performance now

seems to lie more along the path of increasing

concurrency (multiple CPU cores per chip and increased

parallelism) rather than increasing clock speed [38], future

work with even very large molecular systems with

hundreds of thousands of atoms may require scalability

to small ratios of atoms per node. While there have been

some theoretical studies of scaling in this limit [39], the

Blue Matter classical biomolecular simulation application

running on the Blue Gene/L machine represents the first

demonstration of strong scaling of such a code to this

degree [15, 24, 25, 40]. With access to such timescales

comes increased concern about whether the simulations

are valid, and Blue Matter has also demonstrated the

ability to generate trajectories with excellent energy

conservation over microsecond timescales.

Inherent concurrency of MD

We describe MD as comprised of four major modules:

1. Real space, nonbonded (finite-range pair

interactions).

2. K space (FFT based).

3. Bonded (graph based).

4. Integration (per particle).

Before attempting to scale an algorithm onto many

thousands of nodes, it is useful to estimate how much

concurrency (potential for parallelism) is inherent in

various components of that algorithm. It is interesting

that while the machine architecture of the Blue Gene

supercomputer forced us to think this way, it is likely that

this sort of analysis would be useful on other massively

parallel machines. First, consider the anatomy of an MD

timestep starting with the availability of the coordinates

and velocities of all of the particles in the system (ri, vi):

� Compute forces on each particle due to bonded

(intramolecular) interactions:
� Bond stretches.
� Angle bends.
� Torsions.

� Compute forces on each particle due to nonbonded

interactions (assuming periodic boundary conditions):
� Hard-core repulsive and van der Waals forces

(usually represented by a Lennard–Jones 6-12

potential function that is smoothly switched off

beyond some cutoff distance Rc).
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� Electrostatic forces (1/r2 forces that are

most commonly evaluated using the Ewald

summation technique or its mesh-based

variants [9]).
� Accumulate the total force on each particle and use

that force along with the current position and velocity

of the particle to propagate its motion forward in time

by some small increment.

It is possible to view an MD timestep (or any parallel

computation) as the successive materialization of

distributed data structures on which local computation

takes place. Given a choice of granularity below which no

parallelism will be attempted and taking into account the

data dependencies in the algorithm, one can estimate the

number of data-independent computations required or

available at each phase. An example of such an analysis

for an MD simulation using the P3ME method to treat

the long-range electrostatic forces is shown in Figure 1.

One can afford a lack of concurrency in components that

impose very little computation or communication burden,

but eventually even these will become bottlenecks if they

are not parallelized. This is an instance of Amdahl’s Law,

which states that the amount of speedup possible for a

fixed-size problem is limited by the fraction of the

problem that is nonparallelizable [41]. More precisely, the

PotentialSpeedup ¼ 1/( f þ (1 � f )/N), where f is the

fraction of time consumed by serial operations (or those

replicated on every node) and N is the number of nodes.

In the limit of very strong scaling, the P3ME

convolution step is expected to be the limiting factor,

assuming that a good distribution of work can be

achieved for the bonded and real-space nonbonded force

computations. We conjecture that this would be the case

even for an architecture with full bisectional bandwidth

because of latencies due to the hardware and software

overheads in the successive communication phases

required by the P3ME shown in Figure 1. The development

of a highly scalable 3D FFT was essential for Blue Matter

and has been reported in detail previously [37].

Parallel decompositions
Our explorations of parallel decompositions have

included replicated data methods that leverage the

hardware facilities of the Blue Gene/L platform to

globalize and reduce data structures [42, 43] and

combined spatial and interaction decompositions [15, 24,

25]. This paper focuses on the two spatial decompositions

used in Blue Matter for which we have strong scaling

data. We refer to these two decompositions, described

below, as Version 4 (V4) and Version 5 (V5). Our

investigations began with the realization that for finite-

range pair potentials, given a 3D domain decomposition

of the simulation cell onto a set of nodes, it is possible to

Figure 1

The data dependencies and opportunities for concurrency in 

various stages of the nonbonded force calculations in an MD 

timestep using the P3ME method. For each step, the actual 

number of independent work items is displayed for one of the 

molecular systems, rhodopsin, benchmarked in this paper. Three 

separate threads of computation are shown: finite-ranged pair 

interactions, bonded interactions, and long-range electrostatic 

interactions computed by the P3ME method. The center circle at 

the bottom of the figure represents the convolution step, which is 

evaluated by first Fourier transforming the meshed charge 

distribution, then multiplying by a kernel (Green’s function), and 

then inverse Fourier transforming the result to obtain the meshed 

electrostatic potential. A detailed explanation of the P3ME 

method shown here can be found in [8].
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limit the broadcast of positions by any originating node

to those nodes containing a portion of simulation space

within half a cutoff radius of the boundary of the

originating node. V4, the first spatial decomposition

deployed in Blue Matter, uses geometric criteria to

determine where the real-space nonbonded interaction

between two particles is to be computed, namely, on

whichever node contains the point halfway between the

two particles. This provides a large number of distinct

units of computational work that can be distributed by

partitioning space using an optimal recursive bisection

scheme [24, 25, 40]. The implementation of this method

entails the broadcast of a particle position to a sphere

with radius Reff. Nominally, Reff is half the MD cutoff

distance Rc for real-space nonbonded interactions for

both V4 and V5. However, enabling the preservation of

particle assignments to nodes over several timesteps

requires the introduction of a guard zone that increases

the Reff beyond half of the MD cutoff. The size of the

guard zone is a tuning parameter. The use of this guard

zone in V4 also ensures that the particle positions

required by the K-space and bonded-force modules are

usually available without additional pairs of

communicating nodes.

The most recent parallel decomposition, V5, uses

geometry primarily as a heuristic to prime the set-based

optimization process that follows [15]. Whereas V4

managed data distribution (of particle positions) and

reduction (of forces) by means of a data push and a

caching module, V5 specializes the communication

between the integrator module and the three force-

computation modules described in the previous section.

Whereas the V4 push and cache method required a

distinct communication phase, V5 allows the overlap of

the communication or computation, or both, of one

module with that of another module. On the Blue Gene/L

machine, which has two processors per node, modules are

scheduled to cores to maximize overlap. Currently, the

scheduling is static and we place the longest running

module on its own core.

Achieving a reduction in the number of communicating

partners per node (for the real-space nonbonded

computations) was the major impetus behind the

evolution from V4 to V5. In Blue Matter V4, each node

(the home node) broadcasts the positions of the particles

Figure 2
These figures illustrate the basic geometric ideas behind the spatial decompositions used by Blue Matter. They represent a two- dimensional slice 

of the simulation space, with the domain decomposition onto nodes shown by the array of rectangular cells superimposed on the figures. Node A 

broadcasts positions of particles within the volume of simulation space that it manages to the nodes shaded green or blue. Node B broadcasts 

positions to nodes shaded yellow or blue. The coarse dashed lines are drawn at a distance Reff from the central Nodes A and B. Reff is somewhat 

larger than half the cutoff distance, Rc used for the real-space nonbonded forces to provide for a guard zone. The cells shaded blue receive positions 

from both Node A and Node B and can, therefore, compute forces between particles. While part (a) shows all of the possible nodes that could 

compute the interactions between Nodes A and B in blue, the Blue Matter V4 implementation actually assigns the interaction between two 

particles to the node containing the point in simulation space halfway between the two particles. Part (b) shows the starting point for the 

optimization process used in Blue Matter V5. The nodes shown in blue are part of the interaction option set for the node pair (A, B) whose role 

in the V5 optimization procedure is described in the text. (Reproduced with permission from [15]; ©2006 ACM.)

Rc/2

Reff

Node A 

Node B

Rc/2

Reff

Node B

Node A 

(a)

Broadcast to nodes containing any portion of simulation space

within Reff of the boundary of the central node (V4).

(b)

Broadcast to nodes containing any point in simulation space that

is exactly Reff away from the boundary of the central node

(V5 full skin before optimization).
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homed on that node to each node containing a volume

element that intersects the volume enclosed by an

imaginary shell extending half the cutoff distance (with

some additional guard distance) away from the volume

owned by the home node, as shown in Figure 2(a). This

local volumetric broadcast and the corresponding

reduction of forces back to the home node involve a

number of nodes that scale like O( p), the same scaling

obtained with a classic volumetric decomposition (though

broadcasting to only one-eighth of the volume in

simulation space). The advantage of a technique such as

that used by V4 on a mesh interconnect topology is that

the number of hops for each message is minimized.

The next incremental step in improving the V4

algorithm was taken by noting that all interactions can

still be computed if the local broadcast only goes to nodes

containing a portion of the imaginary shell that forms the

boundary of volumetric broadcast used in the V4

technique, as shown in Figure 2(b). This improves the

scaling of the number of communicating partners per

node to O( p2/3). In this method, the interaction between

two particles can be computed on any of the nodes that

contain the intersection of the broadcast shells for the

nodes containing the two particles. In contrast to the V4

technique, there is no simple geometric construction

(analogous to the choice of the midpoint in V4) to select

the node that should compute the interaction.

Implementation realities can affect the purely geometric

analysis of the volumetric and shell broadcast techniques

as well as those of other geometric approaches [22, 23].

The use of a guard zone added onto the nominal position

broadcast radius enables the assignment of particles and

interaction computations to nodes in order to remain

fixed over multiple timesteps. This means that, for

example, the ideal broadcast to nodes that intersect a

spherical surface of zero thickness becomes a broadcast to

nodes that intersect a spherical surface with a thickness

equal to that of the guard zone.

The insight that the real-space nonbonded algorithm

can be cast as an optimization problem leads to the

method actually implemented in Blue Matter V5 [15]. The

full optimization problem is to minimize the average

execution time per MD timestep, and this is beyond our

ability to solve at present. Attempting to minimize the

number of communicating partners for each node, subject

to the constraint of load balance, is a much more

tractable problem, particularly given a good heuristic

(such as the broadcast to a shell described above) for

starting this optimization process. We begin a description

of the optimization process used in V5 with a set of

definitions and initializations:

Table 1 Communicating partner counts as a function of partition size for Blue Matter Version 4 (V4) volumetric broadcast, full-skin

broadcast, and Version 5 (V5) set-based optimization. The V5 results give the minimum and maximum values as well as the average because

the V5 algorithm result depends on the detailed distribution of particles.

Node

count

Partition V4 V5

Px Py Pz Full

skin

Sparse

(average)

Sparse

(minimum)

Sparse

(maximum)

512 8 8 8 45 42 22 19 24

1,024 8 8 16 63 58 27 24 30

2,048 8 16 16 105 90 38 34 40

4,096 16 16 16 147 122 50 47 54

4,096 8 32 16 147 122 51 46 52

8,192 16 32 16 209 162 65 61 67

16,384 16 32 32 349 242 89 84 91

Table 2 Details about the systems benchmarked with Blue

Matter. All runs were made with the velocity Verlet integrator [14],

all runs used the P3ME technique to handle long-range electro-

static interactions, and all runs were NVE simulations. Rigid water

models were used, and all heavy atom-to-hydrogen bonds in

nonwater molecules were constrained using Rattle [44]. All runs

performed the P3ME calculation on every timestep. Except for the

SOPE (643) data, these choices are those used in production

scientific work (hairpin, rhodopsin) or attempt to match (or

exceed) benchmarking conditions reported elsewhere (ApoAl)

[15, 24, 40].

System Total

atoms

Cutoff/

switch (Å)

P3ME

mesh

Timestep

(fs)

Hairpin 5,239 9.0/1.0 643 1

SOPE 13,758 9.0/1.0 643; 1283 1

Rhodopsin 43,222 9.0/1.0 1283 2

ApoAl 92,224 10.0/2.0 1283 1
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1. Begin by defining the set of nodes to which each node

will potentially broadcast particle coordinates. In the

case of Blue Matter V5, this is the set of nodes that

contains some portion of the surface in simulation

space defined by the locus of points that are exactly a

broadcast distance Reff away from the surface of the

simulation space volume assigned to the originating,

or central, node i. We call this the Candidate Send To

Node Set or, in the case of V5, the Surface Node Set,

which we denote Ci. Of course, the optimization

process could also use the set of nodes defined by the

broadcast volume in V4 or some other set of nodes as

a starting point.

2. For each pair of nodes i and j, define the Interaction

Assignment Option Set to be the intersection of the

corresponding Candidate Send To Node Sets. In

principle, the task of computing the interactions

between particles in i and j can be assigned to any

node in the Interaction Assignment Option Set,

which we will call Oij.

3. The Interacting Pair Assignment structure is defined

to be an upper triangular two-dimensional integer

array indexed by node identifiers i and j. When the

optimization procedure is finished, the array element

Iij will contain the node identifier of exactly one of

the nodes in Oij, which is where the interactions

between the node pair will be computed.

4. We also define the Sparse Send To Node Set Si for

each node i. Si is empty at the start, but at the end, Si

will be a subset of Ci.

Next, we outline the iterative procedure used to

construct the Sparse Send To Set Si:

fConstruct Sparse Send To Node Setg

Initialize all elements of the Interacting Pair

Assignment structure Iij to �1
Let sequence P ¼ f(i, j) 2 P 3 P j (i , j)g where P is

the set of node identifiers

Sort P according to the size of the corresponding

Interaction Assignment Option Set jjOijjj fsmallest
firstg

for k¼ 0 to jjPjj � 1 do

(i, j) ¼ Pk
D¼ Oij fInteraction Assignment Option Setg
if �a 2 P ja 2 (D ˙ Si ˙ Sj) then

fNo need to add any nodes to Sparse Send To Node

Setsg
else if �a 2 P ja 2 (D ˙ Si) � (D ˙ Sj) then

Choose the element a that appears in the

smallest number of Sparse Send To Node Sets Sn

and append it to Si and to Sj fOne of these appends

will be a no-op because (a 2 Si) � (a 2 Sj)
alreadyg

else

From b 2 D choose bjb appears in the smallest

number of Sparse Send To Sets Sm and append it to

Si and to Sj
end if

end for

The results of this optimization process in terms of the

communicating partner count are shown in Table 1. In

fact, scaling plots of the communicating partner count as a

function of node count [15] indicate that the Blue Matter

V5 algorithm equals and is sometimes better than the

Oð ffiffiffipp Þ scaling of the number of communicating partners

achieved by the Plimpton–Hendrickson technique.

Results

Performance data

Table 2 provides information about the specific

parameters used in the runs whose performance is

described here. Figure 3 shows the computational

throughput in timesteps per second compared with the

number of atoms per node. Plotting the data as a function

Figure 3

The computational rates on a number of molecular systems as a 

function of the number of atoms per node. This facilitates compari-

sons between systems of different sizes and explicitly shows the 

degree of strong scaling achieved. The results for Blue Matter 

using the V5 method running on the low-level communication SPI 

provided by the Blue Gene/L Advanced Diagnostic Environment 

[45] are plotted, along with results from the V4 decomposition 

implemented on both MPI and SPI. 
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of atoms per node provides some degree of normalization

for system size when the real-space nonbonded

interactions are the dominant contribution to the iteration

time. One can observe that the scalability plots in the left-

hand portion of Figure 3 (corresponding to larger values

of atoms per node and lower node counts) seem to lie on a

universal curve. This would correspond even more closely

to a universal curve if we plotted the number of real-space

nonbonded interactions per node rather than atoms per

node on the horizontal axis. Figure 3 includes the Blue

Matter V5 [system programming interface (SPI) only]

data, as well the V4 data on both SPI andMessage Passing

Interface (MPI) [40].

Table 3 provides both the time per timestep and the

length of time required for the neighborhood broadcast

and reduce required by the V4 and V5 real-space

nonbonded algorithms. Table 4 shows a different view of

V5 performance by providing the number of days

required to simulate a microsecond for various molecular

systems as a function of partition size. The effects of the

reduction in numbers of communicating partners from

V4 to V5, shown in Table 1 for rhodopsin, are manifest in

the broadcast and reduction data in Table 3. The data

also shows the dramatic difference in scalability between

MPI and SPI for V4 that was previously reported [46].

The application-based tracing facility used by Blue

Matter allows us to collect timing data from all of the

nodes in the system. Trace points in this facility are

placed in start–finish pairs within the source code and are

turned on by compiletime macro definitions. For a single

node, a timing diagram could be constructed by setting an

indicator variable equal to 1 when the start-trace point is

executed and resetting it to 0 after the stop-trace point is

executed. In order to create something analogous to a

timing diagram that contains data aggregated from all the

Figure 4
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Magnified view showing a few timesteps

with additional trace point start/stop pairs shown

Timing plot in which the distribution function for the start and finish 

trace points, corresponding to the start and finish of a timestep on 

each node, is computed. For each timestep, the distribution functions 

Fstart (x) of the start trace points are plotted first, followed by the 

distributions Ffinish (x) for the finish trace points. Some of the traces 

are shown with fills, and the individual traces have been slightly 

offset in the vertical direction for clarity.

Figure 5

This figure shows the contributions of selected components to the 

total timestep as a function of node count for the rhodopsin 

system run using Blue Matter V5. Each major force engine has its 

own communication driver, hence the separate broadcast and 

reduce operations for real space and K space (as well as for the 

bonded forces, which are not shown). There are periods during a 

timestep when both cores are making use of the torus 

simultaneously, as can be seen in Figure 4(b). This decreases the 

performance of the 3D-FFT operations, but the overlapping of 

communication operations gives an improvement in overall 

performance.
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Table 3 Performance data for Version 4 (V4) and Version 5 (V5) algorithms. Results for two 4,096-node partition geometries are shown:

4,096r is 8 3 32 3 16 and 4,096c is 16 3 16 3 16.

b-hairpin

Node

count

Total (ms) Broadcast (ms) Reduce (ms) Atoms per

node
V4 V5 V4 V5 V4 V5

SPI SPI SPI SPI SPI SPI

512 3.01 2.25 0.25 0.11 0.24 0.11 10.2

1,024 2.02 1.45 0.26 0.11 0.25 0.10 5.1

2,048 1.48 1.00 0.25 0.12 0.23 0.10 2.6

4,096r 1.52 1.12 0.26 0.14 0.23 0.17 1.3

4,096c 1.26 0.83 0.24 0.12 0.22 0.08 1.3

SOPE

Node

count

Total (ms) Broadcast (ms) Reduce (ms) Atoms per

node
V4 V5 V4 V5 V4 V5

MPI SPI SPI SPI 643 MPI SPI SPI SPI 643 MPI SPI SPI SPI 643

512 7.47 6.81 6.22 4.83 0.56 0.35 0.16 0.13 0.44 0.35 0.19 0.16 26.9

1,024 5.25 4.30 3.89 2.79 0.63 0.31 0.14 0.10 0.53 0.30 0.16 0.12 13.4

2,048 4.66 2.81 2.45 1.80 0.88 0.25 0.12 0.09 0.86 0.23 0.15 0.10 6.7

4,096r 5.61 2.57 2.11 1.28 1.38 0.25 0.14 0.09 1.33 0.24 0.13 0.10 3.4

4,096c 5.08 1.95 1.60 1.25 1.40 0.22 0.12 0.08 1.31 0.21 0.15 0.08 3.4

8,192 7.31 1.89 1.50 0.97 2.49 0.23 0.14 0.08 2.21 0.21 0.11 0.08 1.7

Rhodopsin

Node

count

Total (ms) Broadcast (ms) Reduce (ms) Atoms per

node
V4 V5 V4 V5 V4 V5

MPI SPI SPI MPI SPI SPI MPI SPI SPI

512 16.77 16.82 17.52 0.77 0.47 0.39 0.54 0.51 0.44 84.4

1,024 9.42 9.50 9.48 0.77 0.39 0.24 0.59 0.39 0.26 42.2

2,048 6.46 5.58 5.07 0.95 0.35 0.19 0.77 0.33 0.19 21.1

4,096r 5.83 3.55 3.21 1.44 0.28 0.19 1.23 0.26 0.15 10.6

4,096c 5.56 3.47 3.11 1.42 0.29 0.18 1.16 0.27 0.15 10.6

8,192 7.17 2.51 2.16 2.47 0.24 0.20 2.05 0.23 0.13 5.3

16,384 12.88 2.28 1.88 5.30 0.25 0.28 4.52 0.24 0.20 2.6

ApoAl

Node

count

Total (ms) Broadcast (ms) Reduce (ms) Atoms per

node
V4 V5 V4 V5 V4 V5

MPI SPI SPI MPI SPI SPI MPI SPI SPI

512 35.56 36.37 38.42 1.05 1.08 0.66 0.68 0.97 0.90 180.1

1,024 19.29 19.18 18.95 1.02 0.74 0.40 0.71 0.76 0.51 90.1

2,048 11.48 10.68 9.97 1.14 0.60 0.26 0.88 0.55 0.30 45.0

4,096r 8.57 6.33 5.39 1.66 0.51 0.22 1.54 0.47 0.23 22.5

4,096c 7.55 5.97 5.44 1.37 0.50 0.19 1.23 0.48 0.21 22.5

8,192 7.34 3.68 3.14 2.22 0.43 0.15 2.15 0.38 0.16 11.3

16,384 12.58 2.57 2.09 4.83 0.40 0.13 4.80 0.34 0.13 5.6
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nodes, we compute the distribution function of

timestamps (over nodes) for every timestep. The

distribution function is a function of time that gives the

fraction of nodes for which the application program had

executed the specified trace point at time t.

This information is used to construct the plots, shown

in Figure 4, that present the aggregated data from all

16,384 nodes for Blue Matter V5 running the rhodopsin

system on the Blue Gene/L computer. In Figure 4(a),

only the distribution functions of the start–finish trace-

point pairs that bracket the entire timestep are shown.

The periodic long timestep is caused by the need to

migrate particles from one node to another as their

positions shift. We avoid migration on every timestep by

keeping track of particles that are somewhat farther away

than half the cutoff distance (the additional amount is the

guard zone mentioned earlier in the introduction to the

section ‘‘Parallel decompositions’’) and also by

monitoring the drift of each particle since the last

migration. When one or more particles drift far enough,

an alarm is raised using the fast short vector reductions

available on the Blue Gene/L system, and a new

migration phase follows. In Figure 1, these are the guard

zone 3-bit all_reduce operations shown in the rectangle

just below the circle containing the Velocity Verlet

integrator engine. Figure 4(b) zooms in on a few

timesteps and shows a plot of the distribution functions

for a number of important components of a timestep. It

is obvious from this plot that the forward and reverse

3D-FFT operations dominate the total timestep. Also,

the scheduling of communication and computation tasks

on both CPUs on each node can also be seen, e.g., the

overlap of the reverse 3D FFT and the real-space reduce.

A detailed breakdown of the time required for the

various operations required to complete a timestep is

provided for the rhodopsin system in Figure 5. It can be

seen from the figure that with more than 2,048 nodes, the

dominant contribution to the timestep switches from the

real-space nonbonded computation to the total K space.

At the highest node count, it is also evident that the time

required for the various localized broadcasts and

reductions increases, and even if the total K-space

contribution could be decreased, the reductions, in

particular, would become the limiting factors for

scalability. The total time per timestep is not simply the

sum of the various contributions shown in Figure 5 for two

reasons: First, both cores are used on each node, and so,

for example, the real-space nonbonded computation can

overlap with portions of the total K-space work as seen in

Figure 4(b), and second, some of the quantities plotted are

already aggregations of other quantities in the plot, e.g.,

the various K-space contributions and total K space.

Energy drift in long NVE simulations

In general, in order to maximize throughput, a

computational scientist wants to use the largest timestep

possible consistent with providing results that adequately

approximate an ideal simulation of the system (potential

surface) under study. Other performance-critical

Figure 6
Energy drift for different values of Verlet integration timestep. The left 

axis shows the deviation from the average total energy normalized by 

the average kinetic energy; the right axis shows the deviation from the 

average total energy in equivalent temperature units (simply obtained by 

multiplying the left axis by the average instantaneous temperature of 

394 K). The fitted slopes in terms of equivalent temperature per unit 

time are 2 � 10�5 K/ns, 1.5 � 10�5 K/ns, and 5.1 � 10�4 K/ns for 

timestep sizes of 1 fs, 1.5 fs, and 2 fs, respectively.
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) Table 4 The performance results for Blue Matter Version 5

expressed as the number of days required to simulate 1 ls for a
specified timestep size. Results for two 4,096-node partition

geometries are shown: 4,096r is 8 3 32 3 16 and 4,096c is

16 3 16 3 16.

b-Hairpin SOPE 643 SOPE 1283 Rhodopsin ApoA

Timestep (fs) 1.0 1.0 1.0 2.0 1.0

Partition

size

Days required to reach 1 ls

512 26.0 55.9 72.0 101.4 444.7

1,024 16.8 32.4 45.0 54.9 219.3

2,048 11.6 20.8 28.4 29.3 115.4

4,096r 13.0 14.9 24.4 18.6 63.0

4,096c 9.6 14.6 18.5 18.0 62.4

8,192 11.2 17.4 12.5 36.3

16,384 19.2 10.9 24.2
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simulation parameters affecting simulation accuracy and

stability include the FFT mesh spacing for P3ME

methods [47] and the force-splitting scheme and timestep

ratios chosen for symplectic multiple timestepping

methods [12, 13, 48].

It is a considerable challenge to determine the optimal

parameters for simulations that involve billions or tens of

billions of timesteps and require machines running at

multiteraflops or faster. Figure 6 shows the change in the

total energy in a simulation of a 66,728-atom solvated

protein system, the lambda repressor, for a series of

timestep sizes. Previously, we reported a measured energy

drift of 6 3 10�4 K/ns (over a 1.6-ls simulation) for

the 43,222-atom rhodopsin system using a 2-fs

timestep [15, 46], which is consistent with the drift of

5.1 3 10�4 K/ns seen in the 2-fs timestep data for the

lambda repressor.

Summary and conclusions

We have described the progression of parallel

decompositions for the real-space nonbonded forces

explored as part of the Blue Matter effort. The

progression started with nongeometric replicated data

decompositions, continued with the V4 spatial and

interaction hybrid decomposition with geometric

assignment of workload, and culminated in the V5

decomposition that uses geometry only as a heuristic that

defines the starting point of the set-based optimization

procedure for interaction assignment. As implemented in

Blue Matter, these algorithms have made

methodologically rigorous simulations of biologically

interesting systems on the microsecond-scale routine on

the Blue Gene Watson supercomputer. Furthermore, we

have demonstrated that excellent energy conservation

over microsecond-scale NVE simulations of solvated

protein and membrane–protein systems can be achieved.

The quality and time to solution that has been

demonstrated by Blue Matter running on the Blue

Gene/L platform enables increased ability to make

contact with experiment by accessing timescales that are

also accessible to physical experiment and it has already

had significant scientific impact [31, 34–36].
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