
RC24586 (W0806-062) June 16, 2008
Computer Science

IBM Research Report

Toward a General Parallel Operating System Using Active
Storage Fabrics on Blue Gene/P

Blake G. Fitch, Aleksandr Rayshubskiy, T. J. C. Ward*, Robert S. Germain
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

*IBM Software Group
Hursley, UK

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1 Introduction

We propose an architecture for a General Parallel Operating System (GPOS) to make the task of efficiently
exploiting Massively Parallel Processing (MPP) machines easier. Technology trends, particularly the appar-
ent end of semiconductor frequency scaling and the limits to symmetric multiprocessor scaling, are driving a
general interest in extending the reach of MPP machines. GPOS aims to enable the reuse of parallel utilities
by end users in much the same way that Unix enables reuse of serial utilities via files and pipes. If GPOS
is successful, it will be possible to efficiently exploit MPP machines like Blue Gene[5] using skills ranging
from programming in scripting languages to MPI. In contrast to some efforts to use distributed computing
for commercial applications, GPOS leverages lessons learned about how to achieve scalability from the HPC
world. Large portions of the GPOS effort involve innovative integration and configuration of preexisting,
successful parallel software packages and technologies which somewhat mitigates the risk of the inherently
aggressive GPOS goals. Work on GPOS has produced an early prototype and while there is clearly significant
work and exploration ahead, the early results are promising.

Our work has focused on a shared storage model with embedded parallel processing which is an approach
we call Active Storage Fabrics (ASF). ASF uses a Parallel In Memory Database (PIMD) to allow the
persistence of structured user data between concurrent and/or successive parallel job steps. PIMD is a
client/server key/value database with an interface like gdbm or BerkeleyDB. PIMD servers, running on
each node of the Blue Gene/ASF partition, and accessible from both embedded and external applications
using a PIMD client library. An active in-memory file system, is created by modifying GPFS to use PIMD
as backing store. This enables rapid access to files including embedded application executables and their
operands. Active storage embedded parallel applications run in ”virtual partitions”, which are mapped to a
subset of the physical partition hardware resources, run concurrently or successively, and are able to share
data via PIMD and/or GPFS. By allowing persistent (in-memory, between jobs), structured storage shared
by embedded parallel modules, reducing overheads, and meeting standard interfaces, we will enable the
integration of Blue Gene with standard enterprise and scientific IT infrastructure.

The GPOS objective is an integrated system that looks and feels to the end user on a Front End Node
(FEN) like a standard general purpose server rather than an HPC supercomputer or cluster. Many users
will experience GPOS as an accelerator attached to a platform they already use, for example a Unix/Linux
machine running commands and libraries they already know. At the same time, it provides an environment
for the skilled parallel programmer to see his work reused as easily as a Unix utility. This generality will
have some cost in overhead compared to writing a single, monolithic HPC MPP solution just as Unix was
less efficient than MS/DOS for some programs; our challenge is to drive those overheads down using what
we have learned from scaling HPC programs. The lower the overheads, the more fine grained the parallel
modularization may be and the larger the number of MPP nodes that may be used in a single work stream.
Eventually, modularity and efforts to reduce overhead will allow GPOS to be used routinely to create solutions
more efficiently than today’s HPC or cluster programming approaches.

The remainder of this paper discusses the approach we are taking to realizing GPOS and highlights some
of the areas we are exploring.

2 Active Storage Fabrics – A Shared Storage Model for GPOS

In the 1974 paper, “The Unix Time-Sharing System”, the authors wrote “The most important job of Unix
is to provide a file system.”[4] Since then, “Everything is a file” has been the most prevalent paradigm in
the operating system world. The file abstraction allowed programs to interoperate and for applications to
be built of processes sharing data via pipes and through the Unix file system. Although there are parallel
versions of the Unix file system, a file itself can be a serializing structure. GPOS needs a mechanism for
parallel programs to interoperate in a way similar to Unix processes. The shared storage model supported
by the Active Storage Fabrics (ASF) approach described below provides such a mechanism.

ASF manages the MPP distributed main memory as shared storage which supports embedded parallel
processes in much the same way as Unix manages the caching of file system pages in main memory. The shared
storage is implemented as a Parallel In-Memory Database (PIMD) which is a key/value database similar to
Berkeley DBTM or gdbm. The utility of a record oriented organization for datasets operated on by parallel
programs has been recognized by Google[1], but has historic roots in systems like IBM VSAMTM [2].

2

Active Storage Fabric
(PIMD with EPM support)

GPOS Front End Node
Linux with bgsh

EPM Unix Commands
Active GPFS

80Gb

8x10Gb
Eth-Bond

GPFS Disk Cluster
10Gb 0

10Gb 1

10
Gbit
Eth
s
w
i
t
c
h

GPOS Blue Gene/P
Prototype Objective

Active
GPFS

Cluster

Active Storage Fabric

PIMD with EPMs

PIMD
Server

grep
EPM
PIMD
Client

Compute Node Lunux
w/ OFED RDMA

MPICH and Load Leveler

NFS mount of aGPFS fs

grep
EPM
PIMD
Client

Expanded View
Blue Gene/P

Compute Node Linux
Collective
 Network

Collective
 Network

Collective
 Network

Collective
 Network

LINUX
IO

Node

Linux
Compute

Node

Linux
Compute

Node

Linux
Compute

Node

T
o
r
u
s

T
o
r
u
s

T
o
r
u
s

LINUX
IO

Node

Linux
Compute

Node

Linux
Compute

Node

Linux
Compute

Node

T
o
r
u
s

T
o
r
u
s

T
o
r
u
s

T o r u s T o r u sT o r u s T o r u s

LINUX
IO

Node
10Gb

Linux
Compute

Node

Linux
Compute

Node

Linux
Compute

Node

T
o
r
u
s

T
o
r
u
s

T
o
r
u
s

T o r u s T o r u sT o r u s T o r u s

LINUX
IO

Node
10Gb

Linux
Compute

Node

Linux
Compute

Node

Linux
Compute

Node

T
o
r
u
s

T
o
r
u
s

T
o
r
u
s

T o r u s T o r u sT o r u s T o r u s

RDMA
Bridge
Node

RDMA
Bridge
Node

RDMA
Bridge
Node

RDMA
Bridge
Node

PIMD Backing Store
(Direct attach disk array)

10Gb Eth

PIMD Backing Store
(Direct attach disk array)

10Gb Eth

Figure 1:

The basic ASF concepts are:

• Manage MPP main memory as scalable shared storage with embedded processing capability

• Use this “Active Storage Fabric” to support parallel file systems like GPFSTM and potentially other
data management systems such as VSAMTM or RDBMS systems (DB2TM , MySQLTM) using an
underlying key-value parallel in-memory database

• Accelerate host system (or Front End Node) jobs with ASF:

– Create libraries of reusable, low overhead Embedded Parallel Modules (EPMs)

– EPMs load from and work with objects in the ASF supported file systems or data bases

– ASF datasets are accessed via standard interfaces from EPMs and host programs

– EPMs smoothly interoperate with each other and legacy host programs (enabling pipelining of
parallel job-steps)

• Integrate Active Storage Fabrics with information life-cycle and other industrial IT management prod-
ucts

The Active Storage Fabrics approach could be taken with a wide variety of MPP machines. We are
focused on the Blue Gene family of super computers which represent processor complexes (memory, networks,
CPUs) that are hosted by standard Linux control and front end machines. For HPC processing, Blue Gene
runs a light weight kernel on the compute nodes and Linux on IO nodes. ASF uses Linux on compute
nodes, i/o nodes, and external Front End Nodes as shown in Figure 1. In order to exploit the Blue Gene
networks we are exploring the modification of iWARP protocols to use a transport layer capable of running
over BG/P hardware and IP networks. This hardware/software platform shares some features with large
Infiniband clusters but achieves unprecedented density and power efficiency. If we imagine future MPP
processor complexes, they may well look like racks of Blue Gene/P shrunk to fit into a standard server or
even personal computer.

PIMD is a parallel, client/server key/value database that focuses on in-memory data organization but
may be backed by persistent storage. A Blue Gene partition used for ASF work will have a PIMD server
running on every compute node. PIMD is a record based data storage system that organizes groups of records
into Partitioned Data Sets (PDSs) which are distributed across a group of PIMD servers. PIMD keys and
values may be fixed or variable length, configurable on a per PDS basis. The distribution is completely

3

controlled by the PIMD and any record may be moved by rebalancing operations or Cuckoo hashing[3] since
on a distributed memory MPP machine each node has a very small (1/P) fraction of the total memory. The
PIMD client library may be used on the compute node fabric or from external machines, in serial or parallel
jobs. When the PIMD client connects to the PIMD server group, it is given the information, including data
distribution hash function, required to address requests to the individual server process likely to be able to
process this request most efficiently. PIMD respects Unix-like access permissions for PDSs.

Embedded Parallel Modules (EPMs) are executed in a Virtual Partition (VP) which is the container for
parallel job execution and is analogous to the Unix process. The VP concept separates setting up an MPI
job, including task connections, from loading and running an application. A VP is a parallel job initiator,
preconfigured with all connections and task processes, that is available to dynamically load and run an
application. VP hardware resources may overlap but GPOS gang scheduling should avoid over subscription
of hardware resources when running parallel jobs. A VP runs one parallel program at a time and is the unit of
scheduling and resource allocation. A VP is comprised of one or more Linux processes on nodes of the MPP
machine which are numbered from 0 to N-1 and are implicitly connected. The VP has a lead process which
interacts with the GPOS scheduler to load, run, suspend, exit, and cleanup. The GPOS work scheduler aims
to schedule EPMs efficiently based on availability of operand datasets and hardware resources.

EPMs may exchange data by running to completion and leaving a file or PDS in PIMD for the next EPM.
If the EPMs are Unix file utilities where one EPM pipes data to another EPM, and this is recognized by the
calling shell, intermediate data may be passed directly between EPMs as a PDS rather than paying to create
a Unix file. In some cases a Unix pipe operation where one parallel program inserts records into a PDS for
another to read without storing them in PIMD would be advantageous. PIMD will offer special services to
allow the reader to tell when the writer has closed its access to the PDS and a RetrieveAndDelete operation
to allow the reader to drain the dataset as it is created. Using PIMD as a communication mechanism between
EPMs has overheads in communications and temporary storage but it allows EPMs to be independent in
terms of data distribution, contributing to generality and reusability.

ASF requires sharing data between FENs, compute nodes, and standard information life cycle manage-
ment subsystems. In many cases these systems use a Unix file system to share data including program
inputs, outputs, and executables. Rather than figure out how to make an operating system work natively
with PIMD instead of a Unix style file system we modified IBM’s GPFSTM to use PIMD instead of a disk or
SAN. On BG/P, a GPFSTM cluster is then run on the BG/P IO nodes so that NFS can be used to mount
the PIMD backed GPFSTM file system on the compute nodes to, for example, load programs. The modified
GPFSTM cluster on Blue Gene sees a single PIMD PDS as a large single disk image which GPFSTM conve-
niently manages concurrent access to. The key used to store GPFSTM blocks is not the offset into this disk
image but rather the inode and file offset of the stored block. This allows file blocks to be located rapidly
once the inode is known by directly accessing the PIMD table backing the GPFSTM file system. During
such operations, GPFSTM must lock the file to avoid breaking proper Unix file semantics. Such fast access
methods allow large node count EPMs to open and access file data efficiently. Currently this client is a light
weight user library but to ensure credential checking, this interface will be eventually handled as a system
call which uses the PIMD client.

There are two approaches to the persistent storage required by GPOS. First, PIMD may be directly
backed by a larger persistent store with the addition of operators to handle journal modifications, demand
retrieve rows, and swap tables between memory and disk. Alternatively, GPFSTM can be used for file system
mirroring or hierarchical storage interactions. The former would allow persistence of PIMD tables directly
where the latter requires that data be placed into Unix file format before being moved to persistent store.
These techniques will allow GPOS exploit the ASF model for far more storage than the main memory of the
MPP machine.

Like the file system did for Unix, ASF provides a framework for tying together the components of GPOS.
GPOS starts with the Blue Gene/P MPP machine with its common clock, high performance networks, and
power efficient stateless nodes as a model of future dense processor complexes. GPOS uses Linux as the
compute node kernel which provides GPOS the primitives to support multiuser, multitasking virtual memory
parallel jobs rather than a single monolithic MPI job which is the MPP and Blue Gene norm. GPOS will use
standard RDMA interfaces to support both the Parallel In-Memory Database and MPI for EPMs. GPOS
uses the IBM General Parallel File System (GPFS), backed by PIMD to integrate ASF with both the Linux
compute node fabric and external Linux nodes supporting end users and persistent storage. GPOS FENs

4

will run a modified Unix shell which recognizes when operands are on the ASF file system and invokes EPMs
rather than standard, host based Unix utilities. Initially, the EPM Virtual Partition execution environment
will be created using MPI jobs dispatched onto the compute node Linux cluster using IBM Load Leveler.

3 Using GPOS

The GPOS user works on a Front End Node which can be a server or personal computer which has been
configured to attach to an ASF MPP partition. The interactive user, script, or controlling program uses the
MPP machine transparently by using commands and libraries which move datasets onto the Active Storage
Fabric and trigger embedded parallel modules. Roughly speaking, this is the “accelerator model”. The
GPOS user environment is configured to have access to the ASF backed GPFSTM file system and to have
access to a job queuing system. Active file system based EPMs that have been implemented are sort, grep,
rm and generate indy sort data. Other host based programs such as database engines may access ASF
storage directly using the PIMD client and trigger PDS based EPMs such as “parallel join”.

There are two major classes of programming in the GPOS environment. First, end users can write EPMs
which is about as difficult as writing any MPI parallel program. Second, end users may invoke EPMs as
utilities or libraries from a GPOS FEN using a program that controls work flow by invoking EPMs. As EPM
overheads decrease, parallel modules may become finer grained. In certain cases, streaming interactions
between parallel modules are possible.

A General Parallel Shell (gpsh) along with standard libraries which are accelerated by the ASF will make
GPOS user programming similar to Unix. Command line operations may be accelerated by EPMs along
with scripts and standard library calls. The gpsh shell will automatically detect cases where operands are
on the ASF file system and invoke the appropriate EPM’s wrappers as needed. The shell will also detect
when intermediate data isn’t stored to a named file, for example when grep is piped into sort, avoid the
overheads of serializing a PDS to a file by telling the EPMs to directly communicate through a PDS. Since
Unix utility EPMs can convert to/from Unix files for named datasets, EPMs and FEN based commands can
interoperate smoothly.

GPOS enables parallel programs to interoperate in a fashion analogous to interoperating Unix processes.
Although significant performance advantage will be available to those who want to write an EPM, we expect
many users will compose applications by using interoperating parallel versions of Unix file utilities. For
example, the Unix command line grep XYZ input | sort > output is interpreted as grep reading a file
called input, finding the lines containing the string “XYZ”, passing them via a pipe to the sort program
which reads and sorts lines on stdin until it is closed and then writes a file called output. The intermediate
dataset passed between grep and sort never needs to be realized as a Unix file. In GPOS, an output dataset
is created in the ASF. Currently grep and sort are coded as EPMs that expect to read input from and write
output to the PIMD backed GPFSTM file system in the ASF. The data that passes from grep to sort is
realized as a Unix file at some cost. The limited GPOS prototype on BG/L was able to achieve significant
speed up over FEN based grep and sort EPMs using a 512 node partition and to scale to operate on terabyte
sized files using an 8192 node partition.

4 Conclusions and Further Research

We have described an approach to a General Parallel Operating System based on Active Storage Fabrics.
We have implemented an early prototype of some ASF functionality on Blue Gene/L with promising results
including creating a 4TB (Terabyte) active GPFSTM file system and executing Unix grep and sort as parallel
embedded programs. We are currently moving from BG/L to BG/P and making a number of changes
including using Linux as the compute node kernel and improving PIMD. This platform will allow further
development of parallel versions of standard Unix utilities for active GPFSTM , a shell able to transparently
invoke these utilities, and explorations into an active relational database storage engine.

5

References

[1] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a distributed storage system for
structured data. In OSDI ’06: Proceedings of the 7th symposium on Operating systems design and
implementation, pages 205–218, Berkeley, CA, USA, 2006. USENIX Association.

[2] Mary Lovelace, Dave Lovelace, Rama Ayyar, Alvaro Sala, and Valeria Sokal. VSAM Demystified. IBM
International Technical Support Organization, September 2003. SG24-6105-01.

[3] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In ESA ’01: Proceedings of the 9th Annual
European Symposium on Algorithms, pages 121–133, London, UK, 2001. Springer-Verlag.

[4] Dennis M. Ritchie and Ken Thompson. The unix time-sharing system. Commun. ACM, 17(7):365–375,
1974.

[5] IBM Blue Gene Team. Overview of the IBM Blue Gene/P project. IBM Journal of Research and
Development, 53(1/2):199–219, January/March 2008.

6

	Introduction
	Active Storage Fabrics -- A Shared Storage Model for GPOS
	Using GPOS
	Conclusions and Further Research

