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ABSTRACT
We present the Active Storage Fabrics (ASF) model for
storage embedded parallel processing as a way to ad-
dress petascale data intensive challenges. ASF is aimed
at emerging scalable system-on-a-chip, storage class mem-
ory architectures, but may be realized in prototype form
on current parallel systems. ASF can be used to trans-
parently accelerate host workloads by close integration
at the middleware data/storage boundary or directly by
data intensive applications. We provide an overview of
the major components involved in accelerating a parallel
file system and a relational database management sys-
tem, describe some early results, and outline our current
research directions.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Manage-
ment; D.4.2 [Operating Systems]: Storage Manage-
ment—main memory, distributed memories

General Terms
Storage, Parallel

Keywords
Active storage, in-memory database, data-intensive com-
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1. INTRODUCTION
We describe the Active Storage Fabrics (ASF) model

which addresses several petascale data intensive com-
puting challenges. Applications exploiting petascale com-
putational platforms can create datasets that are effec-
tively too large to move and consequently require anal-
yses to be conducted in place within the system where
they are stored. As scientific communities reach consen-
sus on computational methods and tools, we can expect
increased reuse of large datasets produced by either sim-
ulation or experiment, effectively driving the creation
of scientific data warehouses. These warehouses will
require standardized access to raw data with efficient
means of custom data reduction, analysis, and presen-
tation.

Consider the case of an investigator wishing to con-
duct a variety of ad-hoc, possibly computationally inten-
sive analyses on a massive dataset. Current practice for
analysis of massive datasets often involves many trips
across the IO bottleneck between the parallel processor
that generates or analyzes the data and the secondary
storage system. The classic HPC model of a massively
parallel machine connected through an industry stan-
dard network (Ethernet or InfiniBand) to a distributed
file system will be strained by such a use case because of
the increasing relative cost of an IO system that matches
the data production capabilities of a petascale data cen-
ter.

The Active Storage Fabrics model is informed by these
emerging data and computationally intensive use cases
and recognizes a need to preserve standard user and
middleware interfaces. The use of standard interfaces
preserves the value of the current user skill-set and also
helps maintain interoperability with existing data life
cycle management tools. The Active Storage Fabrics



concept focuses on embedding parallel computation within
distributed data, enabling parallel and/or serial job steps
to interoperate through common data access methods,
and the modification of middleware at the data/storage
interface in order to transparently exploit those two ca-
pabilities. Overall, scientific data warehousing with the
characteristic of repeated analyses on large, immobile,
and shared datasets, along with technology trends such
as the end of processor frequency scaling, the cost of
I/O bandwidth, and emergence of storage class memory
(SCM) technology[5], demands a new approach to the
relationship between computation and storage which is
currently being explored[2, 1].

The target hardware architecture for the Active Stor-
age Fabrics work can be described as a large number
of Scalable, System-on-a-chip, Storage class Memory
nodes, referred to here as “S3M”, connected to personal
computers, large servers, or massively parallel HPC sys-
tems. The S3M nodes provide a medium for active stor-
age - a current Blue Gene machine with Flash memory
at each node makes a good conceptual model. Early
micro-benchmarks shown in Figure 1 support the feasi-
bility of this model and of evolving the Blue Gene ar-
chitecture into a full S3M platform. The ASF client can
be embedded in middleware on a standard server or in
HPC jobs so they can drive data directly into the active
storage. Currently, true S3M nodes with substantial
amounts of persistent memory are too costly to build at
scale. Development of system software and applications
for this hardware model on currently available systems
should position ASF to fully utilize cost effective persis-
tent memories as they become available.

ASF provides a framework for allowing applications
and middleware to offload computation into storage where
the ”storage” is actually backed by the memory (DRAM
and/or SCM) of a parallel machine. Effectively, the ag-
gregate memory of a large parallel computer presents
storage class memory characteristics without persistence.
The capability of Blue Gene class machines to be data
intensive computational platforms enabled early ASF
development but the architectural target is defined by
the promise of economical S3M platforms. We have fo-
cused on integrating ASF with major middleware pack-
ages, namely the IBM General Parallel File System (GPFS)
and IBM DB2 by prototyping ASF using IBM Blue
Gene/L and Blue Gene/P systems. Integrated in this
way, ASF enables middleware packages to transparently
accelerate selected modules while maintaining legacy
user interfaces of those packages.

We present an overview of the Active Storage Fab-
rics model, describe two middleware integration exer-
cises that exploit ASF prototypes to enable transparent
acceleration, and show some early performance results.
We outline current development objectives and future
research directions.

2. ACTIVE STORAGE FABRICS
OVERVIEW

ASF is a collection of components that surround a
parallel in-memory database (PIMD). PIMD is a paral-
lel client, parallel server, key/value object store. While

the specific design of PIMD is shaped by the S3Mtarget
platform, such hash-based key/value containers are used
extensively for search, file-sharing, and other applica-
tions[4, 3]. PIMD stores key/value records in contain-
ers called Partitioned Data Sets (PDS) which are dis-
tributed in the parallel server. PIMD clients may run
on the same nodes as the server or may be external to
the Active Storage Fabric. PIMD can respect Unix style
access permissions on a per PDS basis (although this is
not currently enforced). PIMD hashes records into the
fabric and maintains load balance by data redistribu-
tion.

Maintaining balance in the data distribution is im-
portant as the node count increases because each node
contains a proportionally smaller fraction of the total ca-
pacity. The PIMD server is allowed to relocate records
if, despite hashed distribution, a node becomes over-
loaded. However, such relocation should preserve hash
locality by bumping records to nodes that are nearby in
the network topology. The PIMD client always accesses
records starting with a request to the PIMD server in-
dicated by the hash location however the server task
may request operations on the node a record has been
bumped to. In addition, since S3M nodes will fail,
PIMD must allow selected data sets to be stored with
sufficient redundancy for any node’s data to be recov-
ered using a method that allows the S3M highly parallel
processor fabric to scalably rebuild and redistribute data
after failures.

To fully leverage the capability of the system, embed-
ded parallel modules (EPMs) are run on the S3M ac-
tive storage fabric concurrently with the PIMD server.
The PIMD server and the EPM using the PIMD client
are both parallel jobs executing on the S3M platform.
The EPM using the PIMD client connects to the PIMD
server using standard remote direct memory access (RDMA)
protocols such as the OFA verbs[8]. The efficiency of
connecting interoperating parallel programs, such as PIMD
client to server, determines how fine-grained EPMs can
usefully be in the ASF model. Once connected to the
PIMD server an EPM task may access records in a PDS
by key, using parallel iterators, or access all records
stored on the local node. EPMs use the PIMD client
and can be implemented using MPI (or an alternative
parallel environment) for application specific communi-
cations and both forms of communications exploit the
S3M network. S3M platforms allow EPMs to be highly
scalable parallel programs. Creating environments to
allow execution of function inside storage is not a new
concept[11, 9], however, the S3M network allows the em-
bedded function to be scalable and to have access to the
entire data set rather than a disk block. This enables
wider array of data formats and functions to be storage
embedded.

ASF in practice has a minimum of two interoperat-
ing parallel jobs, the server and at least one client. The
client can run on S3M hardware or a conventional server.
The model anticipates an even greater level of paral-
lel multitasking with PIMD storage as primary means
of communications between interoperating parallel pro-
grams. In order to support safe, multiuser, parallel
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Figure 1: Micro-benchmarks run on Blue Gene/L showing performance relevant to data intensive applications.

multitasking jobs in ASF, we use a Linux kernel on
the S3M nodes including on our BG/P prototype plat-
form. While our simple Linux environment may limit
absolute scalability, it allows our prototyping effort to
exploit standard packages (i.e. OFED, MPI, GPFS),
and significant progress has been made toward enabling
Linux to function in this capacity [14]. EPMs are cur-
rently written as standard MPI programs which use the
PIMD client to access active storage and we get signifi-
cant leverage from the use of open source software.

While PIMD datasets might be accessed only by a
single application embodied as an EPM, the ASF model
anticipates that applications will be constructed using
multiple interoperating EPMs which share PIMD datasets
much as Unix programs interoperate using files. Inter-
operating EPMs may access PIMD datasets either di-
rectly using the PIMD client or through middleware in-
terfaces. In the latter case, a software adapter layer uses
the PIMD client and is cognizant of middleware spe-
cific record formats. Supporting interoperating EPMs
allows the modularization of application solutions and
encourages the reuse of modules. This modularization
will allow a division of labor between those who imple-
ment EPMs, typically an HPC programming activity,
and those who develop applications that use interoper-
ating EPMs, typically a scripting or more user-oriented
activity.

ASF achieves standard programming interfaces when
integrated with host based middleware packages and can
allow users of those packages to exploit S3M platforms
transparently. By modifying a middleware package to
use ASF to store objects it is generally possible to of-
fload hot spots from the host into the active storage
while non-EPM modules continue to function as before.
A host based module will use the modified data access

path to fetch PIMD records into the existing middleware
or application data structures where they are operated
on normally. Executing an EPM after such host based
accesses can require the application to flush and lock
data objects for consistency. For example, a package
using an embedded sort EPM after host based module
has accessed the target PDS must ensure that the en-
tire PDS has been flushed out to the PIMD server before
the sort EPM begins. The required interfaces are likely
available since applications using disk based persistent
storage need methods to deal with similar issues. Since
EPMs and host based modules can interoperate using
PIMD, applications can be incrementally parallelized.
Non-performance critical sections of code, perhaps the
vast majority of an application, can remain host based.

3. ASF ACCELERATION OF
UNIX UTILITIES

The Unix file is commonly the main logical container
in many storage solutions. Even with PIMD as our basic
storage access method, files will be needed for operating
system data and user program data (including EPMs)
as well as application data. ASF has been integrated
into the IBM General Parallel File System (GPFS)[13]
to meet these needs and to provide the initial basic ASF
accelerator platform.

GPFS has a tremendous number of useful features in-
cluding distribution of data among a large number of
nodes and integration with data life cycle management
utilities. In order to exploit S3M platforms, we mod-
ified a research version of GPFS to access the active
storage fabric using the PIMD client. The GPFS clus-
ter accesses the entire ASF partition as a SAN or single
disk image. This allows a large number of GPFS nodes
to access an even larger number of ASF nodes, each



with a relatively small fraction of the total active stor-
age. Each GPFS cluster member node uses the PIMD
client to read and write file blocks. A single GPFS file
system is mapped to a single PIMD PDS. The PIMD
record key for each block is formed from Unix file num-
ber (inode) and block’s offsets. PIMD record’s value is
simply the block of data. The data portion is amenable
to compression.

These modifications allow GPFS to create a file sys-
tem that is backed by the memory of a S3M system,
which in the case of our prototype means the memory
of a Blue Gene computer. On current Blue Gene ma-
chines, we run a GPFS cluster on the I/O nodes inter-
connected by an external Ethernet. Each GPFS cluster
member uses the PIMD client to access a single, large
disk image using internal connections to the compute
node fabric.

Embedded Process Modules which exploit the S3M
computational capabilities can be invoked in the ac-
tive fabric and access GPFS files given the inode num-
ber. There are two options in providing direct access to
the GPFS PDS for EPMs. First, the EPM can run as
trusted code which is allowed to open the PDS directly
thus bypassing all file system security. Second, a light
weight GPFS specific client could provide file system ac-
cess to PIMD that respected GPFS security. We have
explored EPMs for Active GPFS using the first method.

We have prototyped common Unix utilities for Ac-
tive GPFS including grep and rm. We have also im-
plemented an application specific EPM which generates
Indy sort records[6] directly into an Active GPFS file as
well as an EPM to carry out the parallel sort of that
file. The objective was to benchmark equivalent func-
tion to the Unix script gen 1TB >start; grep AAAAAA

start > t1; sort t1 > t2. Performance results from
this effort are in Table 1 which show significant speedups
over the equivalent command line utilities for smaller
datasets and show the ability to perform those com-
mands on datasets of sizes that are effectively impossible
to compute on a single server.

The Active GPFS test driver was hand coded, how-
ever future work could include an ASF aware shell which
would automatically select the EPM utilities when in-
put operands are large and in the active file system.
Utilities that had not yet been parallelized would inter-
operate with EPMs but would require pulling file blocks
over to the host via normal file system accesses, for stan-
dard processing.

4. ASF RDBMS ACCELERATION
A Relational Database Management System (RDBMS)

such as IBM DB2 can exploit ASF and S3M machines
for transparent acceleration. We are currently complet-
ing an ASF DB2 prototype which exploits DB2’s Feder-
ated Wrapper interface for external data sources. Since
the DB2 wrapper interface allows only read operations,
we need a collection of components in order to achieve
fuller RDBMS functionality using ASF. This conglom-
eration we affectionately call ’Frankenbase’.

The main objective of Frankenbase is to allow DB2 to
offload relational operations on ASF datasets through

Parallel Data Intensive Primitives
(scan, join, sort,grep , mapreduce,

bulk load, order preserving compression, etc )

MySQL
(Storage Engine)

DB2
(Federated
Wrapper)

Data Intensive
Utilities

FrankenBase

ASF

Parallel In-Memory
Database

EPM
Job Control

TPC-H Business Intelligence
Benchmark

insertdeleteupdatequeries bulk load

Blue Gene
Compute Node Linux

Figure 2: Diagram showing the software architecture of
“Frankenbase” and how different subsets of function are
handled (queries, inserts, bulk loading).

the federated wrapper interface[12]. The DB2 feder-
ated wrapper interface understands what the external
data source is capable of through a query/response in-
terface and, assuming at least basic access to table data,
allows DB2 to ’compensate’ for any missing function
using a simple row retrieval. This allows us to incre-
mentally add parallel capability to Frankenbase start-
ing from row retrieval and predicate/projection scans up
through multi-table joins. DB2 parses the SQL, builds
an execution plan, offers to offload work, and compen-
sates for missing offload function when required.

As Figure 2 shows, there are several major compo-
nents to Frankenbase and they require a significant amount
of integration code to stitch together a fully functional
RDBMS. The ASF Relational Layer (ASF-RL) is the
infrastructure required to enable Frankenbase to store
relational tables in PIMD datasets and carry out embed-
ded relational operations. Figure 3 provides a view of
the various components of Frankenbase laid out on the
S3Mplatform with a connected host. ASF-RL stores a
single relational table in a single PIMD PDS and a single
relational row in a single key/value record. The binary
format of a row is accessed using an accessor class with
methods supporting field-level access without unpacking
rows to records. Table definition metadata that defines
the behavior of this class is represented in a flat seri-
alized format that can be distributed for parallel pro-
jections and joins on persistent tables or intermediate
row streams. This serialized format can be generated
from a user defined relational table definition via the
SQL CREATE TABLE command. The tuple format
is most often accessed just once and propagated into



Function BG/ASF pSeries p55
(Measured at Host shell and break out of EPM components) 512 nodes (1 thread)

Total host command time: create Indy File (22GB) 22.26s 686s
Total host command time: unix grep of Indy File 25.1s 3180s
File Blocks to PIMD Records (Embedded grep): 7.0s

Grep core function (Embedded grep): 2.5s
PIMD Records to File Blocks (Embedded grep): 7.6s

Total time on Blue Gene/ASF fabric (Embedded grep): 18.8s
Total host command time: sort output of grep: 60.41s 2220s

File Blocks to PIMD Records (Embedded sort): 2.9s
Sort core function (Embedded sort): 12.2s

PIMD Records to File Blocks (Embedded sort): 15.8s
Total time on Blue Gene/ASF fabric (Embedded sort): 54.7s

(a) 22 GB synthetic “Indy Benchmark” file on 512 node BG/ASF partition vs. pSeries p55

Function BG/ASF BG/ASF
(Measured at Host shell and break out of EPM components) 512 nodes 8192 nodes

Total host command time: create Indy File: (22GB) 22.26s (1TB) 197s
Total host command time: unix grep of Indy File: 25.1s 107s

File Blocks to PIMD Records (Embedded grep): 7.0s 18.1s
Grep core function (Embedded grep): 2.5s 5.1s

PIMD Records to File Blocks (Embedded grep): 7.6s 19.9s
Total time on Blue Gene/ASF fabric (Embedded grep): 18.8s 50.2s

Total host command time: sort output of grep: 60.41s 120s
File Blocks to PIMD Records (Embedded sort): 2.9s 6.8s

Sort core function (Embedded sort): 12.2s 14.8s
PIMD Records to File Blocks (Embedded sort): 15.8s 22.4s

Total time on Blue Gene/ASF fabric (Embedded sort): 54.7s 66.55s

(b) 22 GB synthetic “Indy Benchmark” file on 512 node BG/ASF partition vs. pSeries p55

Table 1: Breakdown of benchmark results for 3 runs. Each benchmark involved generation of a synthetic “Indy
Benchmark” data file, a grep for records containing “AAAAAA” (yielding about one third of the original data), and
sorting the output from grep.
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the required contexts for performing an operation on an
ASF-RL table, for example the tasks in the parallel join
EPM. The formats for tables (metadata) are managed
in a single Frankenbase server process.

The primary EPMs in the ASF-RL required by Franken-
base are the table scan and relational join. The ASF-
RL join EPM is a parallel program which supports a
simple data flow graph environment in which we have
implemented multi-table joins as a sequence of hash-
joins. The first stage of the pipeline performs a two
table join and propagates resulting tuples to the next
stage which joins them to the third table and so on. For
joins on large datasets, the join EPM may be compiled
with knowledge of the specific row format definitions
of the operands, reducing overhead in accessing fields
in the binary representation of rows during projections
and joins. When the ASF-RL join is used for DB2 ac-
celeration, this compilation would happen as part of the
query process.

Our immediate objective is to measure a significant
portion of the TPC-H[10] benchmark using Franken-
base. TPC-H tables will be defined and loaded using
outside utilities and the TPC-H queries will go through
DB2. In principle, a user of Frankenbase will realize the
full function of a RDBMS running on the host which
transparently exploits the S3M platform to accelerate
operations on large datasets.

5. CONCLUSIONS AND
FUTURE WORK

Petascale computational resources will drive sharp in-
creases in scientific data volumes which must be stored
and manipulated. Maturity of tools and methods among
communities of computational scientists will drive ad-
hoc access to large data sets as multiple lines of in-
vestigation repeatedly mine these data sets. Trends in
hardware technology, such as the approaching end of
processor clock frequency scaling and cost effective stor-
age class memory solutions, motivate a reexamination
of the classic relationship between storage and process-
ing. A system addressing petascale data and storage
challenges should do so without requiring its users to
become heroic petascale parallel programmers. The Ac-
tive Storage Fabrics model addresses these challenges in
a scalable way that leverages the value of current end
user skills.

We have outlined the Active Storage Fabrics model
and the S3M hardware architectural strawman which it
targets. We have shown paths to transparent accelera-
tion of utilities in two data management frameworks, a
POSIX file system and a relational database, and how
storage embedded utilities and legacy utilities can in-
teroperate. We have created prototype systems based
on the ASF model using current Blue Gene/L and Blue
Gene/P systems as provisional S3M platforms, noting
the lack of persistence. We presented results supporting
the case for Blue Gene’s capabilities as a S3M platform
and the ASF model as a path to exploiting those capa-
bilities. We have described our current work aimed at
exploiting the ASF prototype for transparent relational
database acceleration. Our early results demonstrate

the feasibility and effectiveness of the Active Storage
Fabrics model in addressing petascale data and storage
challenges. Future work includes refining and extending
our ASF prototype on the Blue Gene/P supercomputer
in preparation for follow-on machines.

“Tape is Dead, Disk is Tape, Flash is Disk, RAM
Locality is King”–Jim Gray[7]
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