
A High-Performance SIMD Floating Point Unit for BlueGene/L:
Architecture, Compilation, and Algorithm Design

Leonardo Bachega∗ Siddhartha Chatterjee∗† Kenneth A. Dockser‡

John A. Gunnels∗ Manish Gupta∗ Fred G. Gustavson∗

Christopher A. Lapkowski§ Gary K. Liu§ Mark P. Mendell§ Charles D. Wait¶

T. J. Chris Ward∗

Abstract

We describe the design, implementation, and evalu-
ation of a dual-issue SIMD-like extension of the Pow-
erPC 440 floating-point unit (FPU) core. This extended
FPU is targeted at both IBM’s massively parallel Blue-
Gene/L machine as well as more pervasive embedded
platforms. It has several novel features, such as a com-
putational crossbar and cross-load/store instructions,
which enhance the performance of numerical codes.
We further discuss the hardware-software co-design that
was essential to fully realize the performance benefits of
the FPU when constrained by the memory bandwidth
limitations and high penalties for misaligned data ac-
cess imposed by the memory hierarchy on a BlueGene/L
node. We describe several novel compiler and algorith-
mic techniques to take advantage of this architecture.
Using both hand-optimized and compiled code for key
linear algebraic kernels, we validate the architectural
design choices, evaluate the success of the compiler, and
quantify the effectiveness of the novel algorithm design
techniques. Preliminary performance data shows that
the algorithm-compiler-hardware combination delivers
a significant fraction of peak floating-point performance
for compute-bound kernels such as matrix multiplica-
tion, and delivers a significant fraction of peak mem-
ory bandwidth for memory-bound kernels such as daxpy,
while being largely insensitive to data alignment.

∗ IBM T. J. Watson Research Center, Yorktown Heights, NY 10598,
USA

† Corresponding author:sc@us.ibm.com .
‡ IBM Corporation, Research Triangle Park, NC 27709, USA
§ IBM Corporation, Markham, ON, Canada
¶ IBM Corporation, Rochester, MN 55901, USA

1. Introduction

BlueGene/L [2] is a massively parallel computer sys-
tem being developed at IBM T. J. Watson Research Cen-
ter, in collaboration with Lawrence Livermore National
Laboratory. The BlueGene/L program targets a machine
with 65,536 (dual-processor) nodes, with a peak perfor-
mance of 360 trillion floating-point operations per sec-
ond (360 TFLOP/s). It is expected to deliver previously
unattainable levels of performance for a wide range
of scientific applications, such as molecular dynamics,
turbulence modeling, and three-dimensional dislocation
dynamics. This level of performance requires a per-
processor peak performance of around 2.8 GFLOP/s;
the workloads require double-precision operations and
make heavy use of kernel operations such as matrix mul-
tiplication.

Starting with the PowerPC 440 FPU core [5]—a
high-performance dual-issue floating-point unit (FPU)
of recent design—we set out to enhance its performance
and flexibility to handle the floating-point workloads tar-
geted by BlueGene/L. This core has a peak performance
of greater than 1 GFLOP/s, which needed to be doubled
to meet the BlueGene/L targets. Since the design had
already been extensively optimized, it was not possible
to close the performance gap by doubling the clock fre-
quency. Fundamental architectural changes would be re-
quired for this purpose.

Since actual performance (as opposed to peak perfor-
mance) relies heavily on how well software can be op-
timized for the platform, it was imperative to develop
algorithms and compilers to match the proposed hard-
ware changes. Feedback from the software teams was in-
strumental in identifying and refining new extensions to
the PowerPC instruction set to speed up target applica-

tions without adding too much complexity. On the hard-
ware side, we needed to double the raw performance of
our FPU while still being able to connect it to the pre-
existing Auxiliary Processor Unit (APU) interface of the
PowerPC 440G5 CPU core [14], under the constraints of
working with the dual-issue nature of the CPU and keep-
ing the floating-point pipes fed with data and instruc-
tions. On the software side, we needed tight floating-
point kernels optimized for the latency and throughput
of the FPU, and a compiler that could produce code op-
timized for this unit.

This paper makes four major contributions. First, a
minor modification of the PowerPC 440 FPU Core de-
sign produces a SIMD-like FPU with novel features
at both the ISA and microarchitecture levels and dou-
bles its performance. Second, the compiler code gener-
ation algorithm incorporates several non-trivial exten-
sions of Larsen and Amarasinghe’s Superword Level
Parallelism algorithm [15]. Third, the algorithm design
explores innovative techniques (such as, performing re-
dundant computations to allow more efficient memory
access) to double the performance of key kernels while
being insensitive to the alignment of the data. Finally,
we document a concrete example of hardware-software
co-design, showing how algorithmic requirements drove
certain architectural decisions, how architectural choices
constrained compiler optimization possibilities, and how
algorithm design was creatively altered to work around
limitations in both the architecture and the compiler.

The remainder of this paper describes the innovative
features of the floating-point unit (Section 2), an opti-
mizing compiler targeting this unit (Section 3), and effi-
cient algorithms for key linear algebraic kernels for this
unit (Section 4). We evaluate the level of success for
both hand-optimized and compiled code for these ker-
nels, and explore how close we can come to achieve two
times the maximum theoretical performance of the Pow-
erPC 440 FPU (Section 5). We conclude with an evalu-
ation of the various design choices and a discussion of
possible future extensions to the FPU architecture (Sec-
tion 6).

2. Architecture

Variants of the fused multiply-add (FMA) instruc-
tion T ← ±(B ± A ∗ C) [1, 17] are the workhorse of
most modern FPUs. This instruction delivers the equiv-
alent of two floating-point operations with a perfor-
mance improvement of about 1.7× [8, 18]. The Pow-
erPC 440 FPU Core, which is capable of performing
one fused multiply-add instruction per cycle while run-

ning at clock speeds in excess of 500 MHz, is consid-
ered to have a peak performance of greater than one
billion floating-point operations per second (i.e., one
GFLOP/s).

2.1. Design choices

We evaluated four design choices to reach the perfor-
mance target: adding a second datapath to the PowerPC
440 FPU; using a predefined single-instruction multiple-
data (SIMD) processor; creating a simple SIMD version
of the PowerPC floating-point instructions; and creat-
ing an extended SIMD-like engine based on the Pow-
erPC FPU design. Most of these options require newly
defined instructions. Fortunately, the embedded Pow-
erPC architecture, referred to as Book E [13], allows
for user-defined extensions to the ISA. Additionally, the
APU interface on the PowerPC 440G5 Core allows co-
processors to support new instructions—referred to as
APU instructions—without requiring modifications to
the CPU core [12]. While APU instructions typically do
not become part of the architecture proper, they can still
be utilized by assemblers and compilers that target the
specific implementation.

The addition of a second datapath, while fairly
straightforward, would not be able to produce the re-
quired speedup in real-world code. The problem had
to do with the dual-issue nature of the host CPU.
Up to two computational instructions could be is-
sued each cycle, meeting the required raw perfor-
mance. However, this leaves no room for the si-
multaneous issuing of load instructions, resulting in
data starvation. Furthermore, adopting such an ap-
proach would mean that both units would share the
same set of thirty-two 64-bit FPRs. This was unac-
ceptable as it would lead to register starvation, es-
pecially when performing four-operand FMAs on
double-precision complex numbers, each of which oc-
cupies two 64-bit registers.

Clearly, in order to be able to support simultaneous
loading and multiple parallel executions, we needed to
pursue some sort of SIMD approach. This would also
have the advantage of reducing the size of the code foot-
print, and the required bandwidth for instruction fetch-
ing. While SIMD instruction sets already exist [4, 21],
including Altivec/VMX [4] which was specifically de-
fined for PowerPC, these units primarily operate on inte-
ger and single-precision data. However, our target appli-
cations require double-precision data. Additionally, typ-
ical SIMD processors contain some sort of vector regis-
ter file. Each vector register contains multiple elements,

2

and each element by default occupies a fixed “slice” of
the datapath. While this can be very efficient for sim-
ple elementwise calculations, it lacks the flexibility that
our workload needed.

Creating our own simple SIMD instruction set did
not look much better. While this would have enabled us
to perform double-precision SIMD floating-point oper-
ations, we were still constrained by the limitations of a
standard vector register file and vector datapaths.

The final design choice, which was ultimately
adopted in the PowerPC 440 FP2 Core design, goes be-
yond the advantages of adding another pipeline and of
the SIMD approach. Figure 1 shows the design (not
drawn to scale) of the FP2 core. Instead of employ-
ing a vector register file, we use two copies of the archi-
tecturally defined PowerPC floating-point register file.
Both register files are independently addressable; in ad-
dition, they can be jointly accessed in a SIMD-like
fashion by the new instructions. One register file is con-
sidered primary, while the other is consideredsec-
ondary. The common register addresses used by both
register files has the added advantage of maintain-
ing the same operand hazard/dependency control logic
used by the PowerPC 440 FPU. The primary regis-
ter file is used in the execution of the pre-existing Pow-
erPC floating-point instructions as well as the new
instructions, while the secondary register file is re-
served for use by the new instructions. This allows
pre-existing PowerPC instructions—which can be in-
termingled with the new instructions—to directly
operate on primary side results from the new instruc-
tions, adding flexibility in algorithm design which
we exploit in Section 4.2. New move-type instruc-
tions allow the transfer of results between the two
sides.

Along with the two register files, there are also pri-
mary and secondary pairs of datapaths, each consisting
of a computational datapath and a load/store datapath.
The primary (resp., secondary) datapath pair write their
results only to the primary (resp., secondary) register
file. Likewise, for each computational datapath, theB
operand of the FMA is fed from the corresponding regis-
ter file. However, the real power comes from the operand
crossbar that allows the primary computational datapath
to get itsA andC operands from either register file. This
crossbar mechanism enabled us to create useful opera-
tions that accelerate matrix and complex-arithmetic op-
erations. The power of the computational crossbar is en-
hanced by cross-load and cross-store instructions, which
add flexibility by allowing the primary and secondary
operands to be swapped as they are moved between the

S0

Quadword Load data

P0

FPR: Primary FPR: Secondary

P31 S31

Primary: Scalar Side

Quadword Store data

Secondary

Figure 1. Architecture of the BlueGene/L
FP2 Core.

register files and memory.
Each FP2 core occupies approximately 4% of the

chip area, and consumes about 2 watts in power. Thus,
creating the SIMD-like extension for both processors of
the compute node doubles the peak floating point ca-
pability, at a modest cost in chip area and power, while
doubling both the number of FPU registers and the width
of the datapath between the CPU and the cache.

2.2. ISA enhancements

The newly defined instructions include the typical
SIMD parallel operations as well as cross, asymmet-
ric, and complex operations. Table 1 shows a few ex-
emplars. Theasymmetricinstructions perform different
but related operations in the two datapaths, while the
complexoperations include symmetric and asymmetric
instructions specifically targeted to accelerate complex-
arithmetic calculations. We have termed these new type
of asymmetric instructionsSIMOMD, for Single Instruc-
tion Multiple Operation Multiple Data.

The asymmetric and complex instructions enable the
efficient calculation of complex numbers as well as en-
hancing the performance of FFT and FFT-like codes.
The cross instructions (and their memory-related coun-
terparts, cross-load and cross-store) help efficiently im-
plement the transpose operation and have been highly
useful in implementing some of our new algorithms

3

for BLAS codes that involve novel data structures and
deal with potentially misaligned data. Finally, the paral-
lel instructions with replicated operands allow important
scientific codes that use matrix-multiplication to make
more efficient use of (always limited) memory band-
width.

The FP2 core supports parallel load operations,
which load two consecutive double words from mem-
ory into a register pair in the primary and the secondary
unit. Similarly, it supports an instruction for par-
allel store operations. The processor local bus of
PPC440 supports 128 bit transfers, and these paral-
lel load/store operations represent the fastest way to
transfer data between the processor and the memory
subsystem. Furthermore, the FP2 core supports a par-
allel load and swap instruction, which loads the first
double word into the secondary unit register and the sec-
ond double word into the primary unit register (and
its counterpart for store operation). These instruc-
tions help implement the kernel for matrix transpose
operation more efficiently.

2.3. Implementation issues

The dual-issue nature of the CPU allows the initia-
tion in each cycle of a quadword (i.e., two doublewords)
load in parallel with two FMAs, yielding a peak perfor-
mance of four floating-point operations per cycle. La-
tency and throughput for the new instructions are the
same as that for the similar PowerPC floating-point in-
structions in the PowerPC 440 FPU. Also, like the Pow-
erPC 440 FPU, there is no hardware register renaming.

In order to avoid excessively depleting the op-
code space allocated for APUs, the unit performs only
double-precision arithmetic operations. This does not
affect performance because the latency of all of the in-
structions (except for divide) is precision-independent.
Load and store operations convert single-precision
operands to double-precision as they enter the unit.
Thus, applications that can get by with the reduced pre-
cision of single-precision raw data can consume less of
the system’s overall memory bandwidth.

To further economize on opcodes, we chose to
limit the permutations of operand swapping. For ex-
ample, the computational crossbar allows 16 vari-
ations on the parallel-multiply instruction by per-
muting on the source of the A and C operands (i.e.,
A[p|s] * C[p|s]->Tp; A[p|s] * C[p|s]->Ts).
However, analysis of our target algorithms revealed
that they generally needed only the four basic varia-
tions of permuting on the source of the A operands (i.e.,

ok

ok

ok

ok

ok

ok

0x10 0x14 0x18 0x1c0x00 0x04 0x08 0x0c

(a)
0x10 0x14 0x18 0x1c0x00 0x04 0x08 0x0c

ok

ok

(b)

Figure 2. Alignment restrictions within a
cache line on the PowerPC 440 FP2 Core.
(a) Doubleword access. (b) Quadword ac-
cess.

A[p|s] * Cp->Tp; A[p|s] * Cs->Ts). The func-
tion of the other permutations could be achieved through
careful coding, and could often be achieved without per-
formance penalty. For example, the permutations on
the C operand could be achieved by using the four de-
fined opcodes and interchanging the roles of the A and
C operands.

The load and store datapath pipes allow single preci-
sion or double precision data to be transferred between
memory and the primary or secondary FPR file. Fortu-
nately, the PowerPC 440G5 core is able to support the
loading or storing of quadword operands in a single cy-
cle. This allowed us to define instructions to simulta-
neously transfer doubleword data to or from both the
primary and secondary register files. For efficient trans-
fer, data must be word-aligned and must completely fit
within a quadword-aligned quadword, as shown in Fig-
ure 2. This restriction exists because the cache archi-
tecture is such that it can transfer data from either one
half of the cache line or the other. Each half is a quad-
word. Misalignments require that a trap handler artifi-
cially align the data within a half-line and then perform
the access again. Thus, the penalty for misaligned data
accesses is in the order of thousands of processor cy-
cles. Sections 3.1 and 4.2 discuss how we proactively
avoid this situation in the compiler and at algorithm de-
sign time.

One compromise in the PowerPC 440 FP2 Core de-
sign is the lack of “D-form” loads and stores. The
D-form instructions generate an effective address
by adding the contents of a general-purpose regis-
ter (GPR)—or zero—to a 16-bit immediate value. Un-
fortunately, the only way to fit this immediate value in
the opcode is to use the portion of the instruction nor-
mally used to hold the secondary opcode. While the
16-bit immediate values add a lot of flexibility, each

4

FMA Example Operation C99 builtins
instr. class

Parallel fpmadd fT,fA,fC,fB
PT = PA ∗ PC + PB

ST = SA ∗ SC + SB
T= fpmadd(B,C,A)

Cross fxmadd fT,fA,fC,fB
PT = PA ∗ SC + PB

ST = SA ∗ PC + SB
T= fxmadd(B,C,A)

Replicated fxcpmadd fT,fA,fC,fB
PT = PA ∗ PC + PB

ST = PA ∗ SC + SB
T= fxcpmadd(B,C,ap)

Asymmetric fxcpnpma fT,fA,fC,fB
PT = −PA ∗ PC + PB

ST = PA ∗ SC + SB
T= fxcpnpma(B,C,ap)

Complex fxcxnpma fT,fA,fC,fB
PT = −SA ∗ SC + PB

ST = SA ∗ PC + SB
T= fxcxnpma(B,C,as)

Table 1. SIMOMD FMA instructions. We show representative instructions for each of the four
classes of operations, their semantics, and their bindings to C99 builtin functions.

D-form operation—by virtue of reserving all ten sec-
ondary opcode bits—consumes the space of 1024 op-
codes. Since we wanted to leave opcodes for other
APUs, we decided to forgo these instructions. In-
stead, we support indexed instructions wherein the ef-
fective memory address is determined by the sum of
two GPRs, or the value in a single GPR. The com-
piler team felt that the lack of D-form load/stores
would affect performance due to the need for ex-
tra integer registers to hold the displacements. This
hypothesis was tested by forcing the compiler to gener-
ate X-form load/stores for all floating point load/stores
for a SPEC2000 FP run at-O3 on a PowerPC Power4
machine. The results showed an average of 5.5% de-
crease in SPEC2000 FP performance. This result is
worse than a PowerPC 440 FP2 Core would experi-
ence, since primary load/stores could still use D-form
load/stores.

The implementation reused much of the logic and
layout from the PowerPC 440 FPU Core design. The
computational datapath from the PowerPC 440 FPU
Core was copied to form primary and secondary ver-
sions in the PowerPC 440 FP2 Core. These datapath
pipes make up approximately 70% of the PowerPC 440
FP2 Core logic (excluding the register files), and their
layout was largely derived from the PowerPC 440 FPU
Core. Not only did this drastically reduce development
time and required resources, but it also helped simplify
our verification effort. Verification did not have to fo-
cus on the correctness of the datapath pipes. Instead, the
simulation effort targeted changes in the datapath con-
trols. Although the operand hazard/dependency control

logic was largely copied from the PowerPC 440 FPU
Core, nontrivial changes were needed to handle bypass
cases between single pipe instructions and dual pipe in-
structions. Since we started with a fully-verified core,
we were able to start simulations early and attack cor-
ner cases of the new design.

3. Compilation

Code generation for the PowerPC 440 FP2 Core is
done within the TOBEY backend [19] of the IBM XL
family of compilers for Fortran, C, and C++. TOBEY
has been enhanced to schedule instructions for the Pow-
erPC 440 FPU Core, and to generate parallel operations
for PowerPC 440 FP2 Core using extensions to Larsen
and Amarasinghe’s Superword Level Parallelism (SLP)
algorithm [15]. This required the use of non-trivial ex-
tensions to the SLP algorithm to generate Cross, Asym-
metric, and Complex SIMD-like instructions, and to ex-
ploit the additional set of FPU registers under the con-
straints of the instruction set architecture.

Generation of parallel code is done late in TOBEY,
just before scheduling and register allocation. The SLP
algorithm works within a basic block. Consecutive loads
and stores are paired up by matching base registers and
displacements, and use/def chains are used to find addi-
tional candidate instructions for pairing. Each candidate
pair is evaluated to see if generating the paired instruc-
tion is more efficient than the sequential instructions. A
paired instruction is considered more efficient if it re-
quires no extra moves to put the operands into the cor-
rect registers. For each instruction, the estimated bene-

5

fit is incremented if the operand is known to be in the
correct primary/secondary register (because previously
generated instructions have placed them there) or if they
are unknown (the register allocator will allocate them
properly). Operands known to be in incorrect registers
decrease the estimated benefit.

Each instruction may only appear in one parallel in-
struction. Our implementation generates all viable in-
struction pairs, and then uses a Briggs coloring algo-
rithm [3] to find the sets of paired instructions where
no instruction is in more than one pair. The benefit for
each set of pairs is then recalculated, and the set with the
largest benefit is selected. This is repeated until no more
paired instructions can be found in a block.

The original SLP algorithm at this point combines
paired instructions to form larger sets, but this step can
be skipped for the PowerPC 440 FP2 Core because it
has only two-way SIMD parallelism. Instructions are
then scheduled to find a consistent ordering. The im-
plementation of the SLP algorithm is somewhat com-
plicated by the existence of asymmetrical instructions in
the PowerPC 440 FP2 Core instruction set. These intro-
duce more possible instruction pairs, complicating gen-
eration and estimation of the benefits of each instruc-
tion. An example of this is thefxcsmadd instruction.
It can be replaced by afxcxma instruction by swapping
theC operands. The benefit of the instruction is calcu-
lated for both variants, and the better one is used.

In addition, the C and Fortran front-ends have
been enhanced with builtin functions for generat-
ing the PowerPC 440 FP2 Core parallel instruc-
tions, exploiting thecomplex * 16 type in Fortran and
double _Complex type in C99. The builtin func-
tions are unavailable in C++, as that language does not
support a builtin complex data type. Section 4 con-
tains an example of the use of these facilities.

3.1. Avoiding alignment traps

Section 2.3 discusses the high penalty for alignment
traps on this architecture. To minimize alignment traps,
TOBEY aligns data of size 16 bytes or more on a 16-
byte boundary for stack locals and externally defined
data. Generation of parallel load/store instructions is
suppressed unless it can be determined by examination
of the alignment information on memory references that
the instruction will not trap. Alignment information is
available for local variables and for external variables
defined in the current compilation unit. In many cases, it
is not possible for the compiler to tell if a pointer points
to aligned data. In this case, a user can assert that a given

address expression is aligned at a specific location in the
program via a builtin procedure:
void alignx(int alignment, const void *ptr).
The compiler trusts this assertion and does not gener-
ate code to check it at runtime.

We have extended the runtime to provide a special
malloc routine which returns a 16-byte aligned loca-
tion from the heap. We are in the process of extend-
ing the Toronto Portable Optimizer (TPO) component
(the middle tier, machine-independent optimizer, shared
by the Fortran, C, and C++ compilers) to propagate
alignment information about pointer targets interproce-
durally, as an extension to the interprocedural pointer
analysis framework in TPO. We are also in the process
of integrating a recently developed framework for auto-
matic program transformations, in case of potential mis-
alignment of data, to enable generation of SIMD instruc-
tions, including parallel loads and stores [7].

3.2. Optimization of reductions

The original SLP algorithm is unable to pair instruc-
tions that have a true dependence between them, such
as an FMA chain for sum reduction. We can break the
true dependencies between every set of two instructions
if we add temporary registers, facilitating the SLP opti-
mization to pair it up. When the SLP algorithm discovers
a true dependence between two isomorphic instructions,
TOBEY transforms them as described above if they are
part of a reducible chain. This optimization is performed
only if strictness is disabled for the procedure. TOBEY
currently detects chains of FMA, FP negate multiply
subtract (fnms), FP multiply subtract (fms), and FP
negate multiply add (fnma), pairing them up using their
parallel equivalents.fms and fnma chains require the
data in the array to be aligned because they need a cross
move between the primary and secondary registers, cost-
ing an extra operation. Parallel loads on the data are
needed for the reduction to be beneficial.

3.3. Register allocation

The challenges in register allocation relate to regis-
ter pairing in parallel instructions. TOBEY’s intermedi-
ate representation uses an infinite supply of symbolic
registers which then are colored to use a finite set of
real registers. The secondary FP registers are treated the
same as the primary ones. The instruction descriptions
enforce pairing of one primary with corresponding sec-
ondary operand. For example a parallel load

LPFL fp500,fp501=Memory(....)

6

describes that the first two operands are paired.fp500
must be a primary register andfp501 must be sec-
ondary. Both symbolic registers are also recorded as an
aligned pair.

The register coloring mechanism, based on Briggs’
register coloring algorithm [3], is modified to allow col-
oring of register pairs. Additional nodes are added to
the interference graph, one for each real hardware reg-
ister. When building the interference graph, each sym-
bolic register used where a primary (resp., secondary)
register is required has an interference edge added to all
real hardware registers that are not valid primary (resp.,
secondary) registers. These new interferences restrict the
symbolic registers to their corresponding register subset.

Following the construction of the interference
graph, nodes (representing registers) are removed from
the graph one by one starting with the lowest de-
gree nodes. As long as there is a node with degree
smaller than number of physical registers, it is guar-
anteed to color and can be reduced. If there is none,
a heuristic is used to select a node to spill. The re-
moved or spilled node is put on top of the reduction
stack. To help in assigning colors for pairs, reduced reg-
isters that are paired are set aside until their partner
register is reduced before they are put on the reduc-
tion stack. Once both members of the pair are reduced,
the two registers are pushed onto the reduction stack to-
gether.

When the interference graph is completely reduced,
registers are popped off the reduction stack and assigned
colors. In the modified algorithm, the hardware registers
are assigned colors first in order. This assigns each color
a primary/secondary attribute as well as matches each
color with its aligned partner. As the symbolic registers
are popped off the reduction stack they are assigned col-
ors according to Briggs’ algorithm. A symbolic regis-
ter that is a member of a pair is popped off the reduc-
tion stack with its partner. The two registers are then as-
signed colors together, thus ensuring a valid color pair.

Another challenge is combining two spill loads/stores
into a parallel load/store. Intermediate spill instructions
with compatible paired registers are combined first, and
only afterwards is space dedicated in the spill area. An
execution count estimate is used to prioritize combin-
ing of these spill locations.

The remaining challenge is to rematerialize parallel
loads as individuals. Memory locations determined as
constant are added to rematerialization table. A parallel
load, such as in the previous example, will also gener-
ate two individual entries (fp500 and fp501) using
scalar load instructions. With these additional entries,

these two registers can be rematerialized if needed in-
dividually.

3.4. Future work

PowerPC 440 FP2 Core provides parallel load in-
structions that can load successive floating point val-
ues into the primary and secondary registers either as
<primary,secondary> or <secondary,primary> pairs.
This decision has to be made in the first phase of the SLP
algorithm, and will change the estimated savings bene-
fits for future pairs of instructions. It might turn out that
this will prevent parallel code from being generated. An
algorithm to estimate the potential benefits of each load
before the load has to be chosen.

The current SLP algorithm generates code for each
basic block independently. The SLP algorithm must be
enhanced to support extended basic blocks. This may al-
low more parallel instructions to be generated.

When pointer alignment is unknown, the compiler
could generate a test of the address, and peel off a loop
iteration to go to a known alignment. After this stage,
__alignx directives can be used to tell TOBEY that
the alignment is now known. This will generate addi-
tional loop bodies, and should only be done at high op-
timization or when the loop is known to be a hot spot.
Applying this to multiple pointers is likely to be imprac-
tical due to exponential code growth.

4. Algorithms

This section discusses several important ideas in the
design of high-performance basic linear algebra subrou-
tines (BLAS) and elementary functions that exploit the
unique characteristics of the PowerPC 440 FP2 Core
while steering clear of potential pitfalls with large per-
formance penalty. Space limitations force us to restrict
our discussion to three examples: matrix multiplication,
a key Level 3 BLAS [6] kernel whose data reuse al-
lows near-peak floating-point performance to be reached
(Section 4.1); daxpy, a representative Level 1 BLAS [16]
kernel where performance is limited by the memory
bandwidth and data alignment becomes important (Sec-
tion 4.2); and a vectorized square root operation, which
is representative of mathematical routines whose use of
data-dependent conditionals make them difficult to vec-
torize (Section 4.3).

7

4.1. Matrix multiplication: C ← αC + βA ·B

Traditionally, high-performance matrix multipli-
cation algorithms have involved the use of a ker-
nel routine that takes advantage of the low-latency and
high-badwidth L1 cache. Several approaches to block-
ing for this routine at higher levels of memory have
been published in the literature [9, 10, 20, 22]. For ex-
ample, if theA matrix is of sizeM ×K, theA, a block-
ing of this matrix yields sub-matrices (blocks) that
are of sizeMB × KB. For the L1 level of mem-
ory, our model indicates that one should load most
of the L1 cache with either theA or the B matrix
operand. The other operands,C, andB or A, respec-
tively, are streamed into and out of (through) the remain-
der of the L1 cache while the largeA or B operand re-
mains consistently cache-resident. By “streaming” we
mean the data for C and B (C and A) enters the L1 cache
in the best possible manner, i.e. stride-one. Our ker-
nel places theB operand, of sizeKB × NB, into
the L1 cache, filling most of the L1 cache. How-
ever, we can streamm1 = M/MB blocks of size
MB × NB and MB × KB, of C and A, respec-
tively, through the L1 cache. By selectingMB based
on the register sizes, we can allowM to be, essen-
tially, infinite. We observe two practical benefits from
our form of kernel construction and usage: (1) A rect-
angular blocking whereNB < KB leads to a higher
FLOP rate, due to the inherent asymmetry that re-
sults from the fact that we have to loadandstoreC. (2)
The streaming feature allows a factor ofM/MB fewer
invocations of the kernel routine.

4.1.1. In Theory: The PowerPC 440 FPU CoreL1-
kernel We sketch how to optimally implement a ma-
trix multiply kernel for C = C + A · B under the as-
sumption that its matrix operands map well into the L1
cache. Only a register block, a panel, and a resident ma-
trix will occupy the L1 cache during a given time inter-
val. See [1, 10, 11] for further details.

The amount of memory at the L0 level equals the
number of registers. Let ad0 × e0 block should occupy
“most” of the registers and be used to hold ad0 × e0

submatrix ofC while the remainder of the registers are
used to stream in row/column elements ofA and B.
This requiresd0 ∗ e0 + d0 + e0 FPRs. Registers can be
loaded more efficiently from contiguous memory. Tra-
ditionally this has meant “preparingA,” stored by col-
umn (the result isAT), by storing it by row, and com-
putingC = C + (AT)T · B. In order to take advantage
of the L2 cache’s pre-fetching abilities and not exceed

its 7 stream limit, we will prepare both theA andB ma-
trices.

The pattern of matrix multiplication requires that
we access rows ofA and columns ofB. As maximiz-
ing the number of independent dot-products in the in-
ner kernel dictates the use of an outer-product matrix-
multiplication algorithm at the register level, the format
of these two sub-matrices is prescribed.

The PowerPC 440 unit has 32 floating point regis-
ters (FPRs) and it is capable of performing one load/one
store and one FMA, in parallel, in one cycle for data re-
siding in the L1 cache. In practice, loads, calculations,
and stores are staggered (i.e. preloads are performed) in
such a manner so as to allow the floating point pipeline
to “flow” efficiently. Thus it follows thatd0 = e0 = 4 is a
good choice as this utilizes 24 FPRs.

In practice, some registers are used for level 3 pre-
fetching so that the initial loading of the submatrix
operands will be overlapped with computation. Note that
streaming, provided by the hardware, is a form of level-
3 prefetching. In order to minimize the impact of la-
tency, consecutived0 × e0 updates are interleaved and
overlapped so that the time between the load and use of
the registers hoding theA andB submatrices can be in-
creased.

4.1.2. In Practice: The PowerPC 440 FP2 CoreL1-
kernel Given the nature of the architecture, we want to
use to PowerPC 440 FP2 Core as a SIMD vector ma-
chine, of vector length two. Conceptually, this can be re-
alized by performing 2 by 2 by 1 submatrix computa-
tions on 2 by 2 submatrices. Let us choose the A ma-
trix to hold vectors of length 2. The B matrix will also
hold vectors of length 2; however, the components of B
will be used as scale factors. A simple example will clar-
ify what we have in mind.

We compute the first column of C(i:i+1,j:j+1) =

A(i:i+1,l:l+1) * B(l:l+1, j:j+1) as

(
a(i, l)

a(i + 1, l)

)
∗

b(l, j) +
(

a(i, l + 1)
a(i + 1, l + 1)

)
∗ b(l + 1, j) and calcu-

late the second column in a similar fashion, using the
two scalars, b(l:l+1,j+1).

In order to respect the cache line size, we have de-
signed our inner kernel as two k-interleaved4 × 2 × 8
(m0×k0×n0) matrix multiplications. Even though this
architecture exhibits extremely good latency character-
istics, we load the non-cache resident matrix,A in 4× 4
“chunks.” This yields a latency tolerance greater than 44
cycles for elements ofA and greater than 20 cycles for
elements ofB, the cache-resident matrix. As the cold

8

x

y S

P

2i 2i + 1

P

S

x

y P

SP SP

2i 2i + 1

S

(a) (b)

Figure 3. Alignment possibilities in daxpy .
(a) Vectors x and y are both quadword-
aligned. (b) Vectors x is misaligned, while
y is quadword-aligned.

load time from the L2 cache to the registers is no more
than 18 cycles, this should allow the inner loop of our al-
gorithm to proceed at the peak rate of the machine. The
extra latency tolerance is built into the algorithm, so as
to cover most of L3 latency for the non-resident,A ma-
trix. The 20 cycle latency coverage for the cache resi-
dent matrix is advisable because the L2 prefetch stream
dictates that the first load of a column block ofB will re-
sult in an L2 miss and we wish to tolerate that as well.

4.2. Daxpy:y ← αx + y

The BLAS-1 routinedaxpy adds to vectory a multi-
ple of vectorx. Unlike the matrix multiplication routine,
there is no reuse of the vector arguments, and the com-
putation of a single element of the result involves two
loads, an FMA, and a store. Performance is therefore
limited by the speed at which data can be transferred be-
tween the memory hierarchy and the register file, and it
is therefore important to use quadword loads and stores.
Given the substantial penalty for unaligned quadword
accesses, the overriding issue in gaining efficiency for
daxpy is that of being able to maintain quadword ac-
cess to and from memory irrespective of the alignment
of the x andy vectors (assuming that these are stored
contiguously in memory).

Depending on the alignments of vectorsx and
y, there are four possibilities. When both vectors
are quadword-aligned, it is trivial to perform quad-
word loads / stores and SIMD FMAs. If both vec-
tors are misaligned, the first element is “peeled”,
thereby aligning the remaining subvectors. This situ-
ation is illustrated in Figure 3(a). The more interest-
ing case arises when one vector is quadword-aligned
while the other is not. This situation can arise, for in-
stance, with successive rows of a C array with an odd
number of columns, or successive columns of a For-
tran array with an odd-sized leading dimension. This

case is illustrated in Figure 3(b). Assume, with-
out loss of generality, that vectory is aligned and vector
x is not. Then vector elementsy2i andy2i+1 are com-
puted as follows.

1. Assume that registers P0 and S0 containx2i−1 and
x2i.

2. Loady2i into register S1 andy2i+1 into register P1
using across load.

3. Perform anfxcpmadd operation: P3/S3 =α·
P0/S0 + P1/S1. Register S3 containsαx2i + y2i,
while register P3 contains junk.

4. Loadx2i+1 andx2i+2 into registers P0 and S0 us-
ing a parallel load. (This operation also sets up the
required precondition fori + 1.)

5. Perform a scalar FMA: P3 =α· P0 + P1. Register
P3 now containsαx2i+1 + y2i+1.

6. Storey2i andy2i+1 to memory from register pair
P3/S3 using across store.

Thus, we have exploited the inherent 3:1 imbalance in
memory accesses to FMAs in this operation to perform
redundant floating-point operations while operating at
peak cache bandwidth. With four-way loop unrolling
and software pipelining, these operations can be sched-
uled to initiate a quadword load or store at each cy-
cle. Note the critical use of the cross-loads and cross-
stores on they vector, and the use of redundant compu-
tation to compensate for the relative misalignment be-
tweenx andy. More elaborate versions of this technique
are used when computing the dot product of two vectors
and when computing a matrix-vector product.

4.3. Square root: branchless programming

The two-way SIMD nature of the PowerPC 440 FP2
Core and the pipeline depth of five cycles means that
code with ten-way independence can in principle keep
the floating-point processor busy at peak performance.
Consider scheduling a collection of ten independent
square root (sqrt) operations on this unit. The imple-
mentation of the intrinsic functionsqrt generally looks
something like this.

double sqrt(double x) {
if (x != 0.0) r = x * rsqrt(x); else r = 0.0;
return r;

}

The conditional branch in the code breaks up the ten
instances of this operation into about 20 basic blocks

9

which the compiler is unable to schedule (recall that the
SLP algorithm works only on basic blocks).

The hardware supports a “parallel select” instruc-
tion, which implements a two-way parallel version of
C’s ternary operationx?y:z in a pipelined manner.
The sqrt intrinsic, when expressed using this method
to handle its special cases, results in 100% utilization
on the ten-way independent collection, compared to
roughly 10% utilization for similar code using compare
and branch.

The compiler schedules instructions the same way for
a user-written function declaredinline as it does for
the intrinsic function. It can therefore be worth express-
ing code which computes several candidate results and
then selects amongst them, rather than choosing ahead
of time which to evaluate.

We have built a small library of Math intrinsic rou-
tines, includingreciprocal , square-root , and
reciprocal square-root operations.

5. Experimental Results

We now describe the performance of various compu-
tational kernels on the first BlueGene/L hardware pro-
totype. This prototype runs at 500 MHz, and consists
of 512 compute nodes, each with 256 MB memory. We
limit ourselves to describing the results obtained on a
single node of the BlueGene/L system, since our focus
in this work has been on exploiting the dual-issue float-
ing point unit. Clearly, the performance results we have
obtained on these computational kernels have been im-
portant for achieving high performance on parallel ap-
plications that use these kernels.

To “measure” the programming effort involved, we
coded multiple versions of the test codes, as appropri-
ate. Their nomenclature and descriptions are as follows.
Unless otherwise stated, all codes are in C, and are com-
piled using the modified XL C compiler described in
Section 3, with optimization level-O3 .

0 The source code of this version contains no
architecture-specific optimizations.

1 This version augments version 0 with alignment
information (__alignx(16,x)) and prag-
mas asserting the absence of pointer aliasing
(#pragma disjoint(* x, * y)). These en-
able the compiler to generate more PowerPC 440
FP2 Core instructions, particularly more paral-
lel loads and stores. Additionally, this version
modifies version 1 by using the C99 builtin func-
tions shown in Table 1 to select PowerPC 440

FP2 Core instructions, making the compiler re-
sponsible for instruction scheduling and register
allocation.

2 This version, in addition to containing the information
present in version 1, incorporates loop unrolling
and software pipelining to help the compiler iden-
tify PowerPC 440 FP2 Core operations and to re-
duce pipeline stalls.

We present performance results for DAXPY,
DGEMV, matrix-matrix product, and vectorized square
root in Figure 4. The data reveals several trends.

1. Figure 4(a) demonstrates that the relative perfor-
mance of small daxpy routines can be virtually in-
sensitive to data alignment. In one case, the vec-
tors are both misaligned and in the other they are
both aligned. Figure 4(b) shows that this trend con-
tinues when the vector sizes become large.

2. The compiler gives relatively good performance
when given data alignment and pointer alias in-
formation in many situations, but when instruction
scheduling and cache hierarchy blocking are ex-
tremely important, it does not match hand-tuned
code.

3. Fixed overheads dominate the small problem-size
running times of the advanced versions of the
codes.

4. Figure 4(d) indicates that the architecture is capa-
ble of sustaining very close to peak performance
when utilizing suitably blocked BLAS-3-like al-
gorithms and the sensitivity of such algorithms to
proper blocking. Note that these results reflect ker-
nel speeds and do not take into account the over-
head of data transformations.

6. Conclusions and Future Work

At a very high level, high-performance engineering
and scientific software can be viewed as an interaction
among algorithms, compilers, and hardware. This paper
is an illustration that such an interaction can produce a
FPU and toolchain for engineering and scientific com-
putations that can deliver a substantial fraction of its ad-
vertised peak performance.

The PowerPC 440 FP2 Core hardware extends the
PowerPC ISA in novel ways to support fast floating-
point kernels, while being able to reuse much of the
logic and layout of the PowerPC 440 FPU. The new
design can run PowerPC floating-point code as well as
code employing our new instructions, and effectively

10

200 400 600 800 1000
Vector Length

400

600

800

1000

1200

1400

1600

Cycles Required

Unaligned

Aligned

200000 400000 600000 800000 1´106
Vector Length

2´106

4´106

6´106

Cycles Required

Unaligned

Aligned

(a) (b)

1000 2000 3000 4000
Vector Length

2´108

4´108

6´108

8´108

Cycles Required

dgemmv2

dgemmv0

100 200 300 400 500
Matrix Order

80

85

90

95

100
Percentage of Peak

Unblocked

Blocked

(c) (d)

1000 2000 3000 4000 5000
Vector Length

50000

100000

150000

200000

250000

300000

Cycles Required

sqrtv_2

sqrtv_1

sqrtv_0

(e)

Figure 4. Running times for various versions of test codes on the PowerPC 440 FP2 Core.

doubles the peak arithmetic and memory access per-
formance of the core. The compiler for the unit ex-
tends both the SLP algorithm for parallelism detection
and the Briggs register allocator to handle register pairs.
The design of high-performance algorithms for this unit
involves innovative techniques to balance the memory
bandwidth and floating-point requirements of the opera-
tions without unnecessarily constraining data alignment.
Initial results show that we are able to sustain a large
fraction of the peak performance for key floating-point
routines.

There are several possible directions for future
work. On the hardware front, while the paired ap-
proach worked very well, we could effectively dou-
ble the performance again had we added a second
pair, and a means to keep the data fed. On the com-
piler front, Section 3.4 discusses several capabilities
not yet in the compiler whose inclusion would en-
hance its capabilities. On the algorithm design front,
there are many more operations for which we plan to de-
sign efficient algorithms.

11

References

[1] R. C. Agarwal, F. Gustavson, and M. Zubair. Exploit-
ing functional parallelism on Power2 to design high-
performance numerical algorithms.IBM Journal of Re-
search and Development, 38(5):563–576, 1994.

[2] G. Almasi, G. S. Almasi, D. Beece, R. Bellofatto,
G. Bhanot, R. Bickford, M. Blumrich, A. A. Bright,
J. Brunheroto, C. Cascaval, J. Castaños, L. Ceze, P. Co-
teus, S. Chatterjee, D. Chen, G. Chiu, T. M. Cipolla,
P. Crumley, A. Deutsch, M. B. Dombrowa, W. Do-
nath, M. Eleftheriou, B. Fitch, J. Gagliano, A. Gara,
R. Germain, M. E. Giampapa, M. Gupta, F. Gustavson,
S. Hall, R. A. Haring, D. Heidel, P. Heidelberger, L. M.
Herger, D. Hoenicke, R. D. Jackson, T. Jamal-Eddine,
G. V. Kopcsay, A. P. Lanzetta, D. Lieber, M. Lu,
M. Mendell, L. Mok, J. Moreira, B. J. Nathanson,
M. Newton, M. Ohmacht, R. Rand, R. Regan, R. Sa-
hoo, A. Sanomiya, E. Schenfeld, S. Singh, P. Song, B. D.
Steinmacher-Burow, K. Strauss, R. Swetz, T. Takken,
P. Vranas, and T. J. C. Ward. Cellular supercomput-
ing with system-on-a-chip. InProceedings of ISSCC’02,
2002.

[3] P. Briggs. Register allocation via graph coloring. PhD
thesis, Rice University, 1992.

[4] K. Diefendorff et al. Altivec extension to PowerPC ac-
celerates media processing.IEEE Micro, 20(2):85–89,
2000. Cahners Microdesign Resorces, 298 South Sunny-
vale Avenue, Sunnyvale, CA 94086.

[5] K. Dockser. “Honey, I Shrunk the Supercomputer” - The
PowerPCTM 440 FPU brings supercomputing to IBM’s
Blue LogicTM library. MicroNews, 7(4):29–31, Novem-
ber 2001. IBM Microelectronics.

[6] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff.
A set of level 3 basic linear algebra subprograms.ACM
Trans. Math. Softw., 16(1):1–17, Mar. 1990.

[7] A. Eichenberger, P. Wu, and K. O’Brien. Vectorization
for short simd architectures with alignment constraints.
In In Proc. SIGPLAN 2004 Conference on programming
Language Design and Implementation, June 2004.

[8] B. M. Fleisher. Private Communication, Sept. 2001.
[9] K. Goto and R. A. van de Geijn. On reducing TLB misses

in matrix multiplication. Technical Report CS-TR-02-
55, Department of Computer Sciences, The University
of Texas at Austin, November 2002.

[10] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A.
van de Geijn. Flame: Formal linear algebra methods en-
vironment. ACM Transactions on Mathematical Soft-
ware, 27(4):422–455, Dec. 2001.

[11] F. G. Gustavson. New generalized matrix data structures
lead to a variety of high-performance algorithms. In R. F.
Boisvert and P. T. P. Tang, editors,The Architecture of
Scientific Software. Kluwer Academic Press, 2001.

[12] T. R. Halfhill. IBM PowerPC hits 1,000 MIPS.Micro-
processor Report, 13(14), 1999.

[13] IBM Corporation. Book E: Enhanced Pow-
erPC Architecture, March 2000. http://www-
3.ibm.com/chips/techlib/techlib.nsf/productfamilies/PowerPC.

[14] IBM Corporation. PowerPC 440 Embedded Processor
Core Users Manual, sa14-2523-01 edition, June 2001.
available through IBM branch offices.

[15] S. Larsen and S. P. Amarasinghe. Exploiting superword
level parallelism with multimedia instruction sets. In
SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 145–156, 2000.

[16] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh. Basic linear algebra subprograms for Fortran us-
age.ACM Trans. Math. Softw., 5(3):308–323, Sept. 1979.

[17] R. K. Montoye, , E. Hokenek, and S. L. Runyon. De-
sign of the IBM RISC System/6000 floating-point exe-
cution unit. IBM Journal of Research and Development,
34(1):59–70, 1990.

[18] R. K. Montoye. Private Communication, Sept. 2001.
[19] K. O’Brien, B. Hay, J. Minish, H. Schaffer, B. Schloss,

A. Shepherd, and M. Zaleski. Advanced compiler tech-
nology for the RISC System/6000 architecture.In IBM
RISC System/6000 Technology, pages 154–161, 1990.
IBM Corporation.

[20] R. C. Whaley and J. J. Dongarra. Automatically tuned
linear algebra software. InProceedings of the Proceed-
ings of the IEEE/ACM SC98 Conference, page 38. IEEE
Computer Society, 1998.

[21] C.-L. Yang, B. Sano, and A. R. Lebeck. Exploiting par-
allelism in geometry processing with general purpose
processors and floating-point SIMD instructions.IEEE
Trans. Comput., 49(9), 2000.

[22] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong,
M. Garzaran, D. Padua, K. Pingali, P. Stodghill, and
P. Wu. A comparison of empirical and model-driven op-
timization. InProceedings of the ACM SIGPLAN 2003
conference on Programming language design and imple-
mentation, pages 63–76. ACM Press, 2003.

12

