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Strong scaling of fixed-size classical molecular dynamics to large numbers of nodes is necessary
to extend the simulation time to the scale required to make contact with experimental data and

derive biologically relevant insights. This paper describes a novel n-body spatial decomposition

and a collective communications technique implemented on both MPI and low level hardware
interfaces. Using Blue Matter on Blue Gene/L, we have measured scalability through 16,384

nodes with measured time per time-step of just over 3 milliseconds for a 43,222 atom protein/lipid

system. This is equivalent to a simulation rate of 50 nanoseconds per day and represents an
unprecedented time-to-solution for biomolecular simulation as well as scaling to fewer than three

atoms per node. On a larger 92,224 atom system, we have achieved floating point performance

of over 1.5 TeraFlops/second on 16,384 nodes. Scientific results using Blue Matter on prototype
BG/L hardware have been published and additional scientific studies are underway which will

grow in scale as hardware resources become available.

Categories and Subject Descriptors: J.3 [Computer Applications]: Life and Medical Sciences—Biology and
Genetics; D.1.3 [Programming Techniques]: Concurrent Programming—Parallel Programming

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Parallel Programming, N-body Simulations, Biomolecular

Simulation, Molecular Dynamics

1. INTRODUCTION

Blue Matter [Fitch et al. 2003; Germain et al. 2005] is a molecular simulation framework
and application developed to support the scientific goals of IBM’s Blue Gene project [Allen
et al. 2001], to serve as a platform for research into application programming patterns for
massively parallel architectures, and to explore ways to exploit hardware features of the
Blue Gene/L architecture. A major design goal for Blue Matter has been to achieve strong
scaling of molecular dynamics for moderately sized systems (10,000 – 100,000 particles)
to node counts corresponding to ratios of atoms per node of order one. This supports
one of the aims of the scientific component of the project, to carry out simulations on a
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scale that allows meaningful comparisons with experimental data. Results on a 43,222
atom protein/lipid system obtained from early production use of prototype Blue Gene/L
hardware were recently published in the Journal of the American Chemical Society, the
flagship journal in the field [Pitman et al. 2005].

From the start of the Blue Gene project, the operating assumption has been that future
performance gains will come from parallelism rather than increases in processor clock
speed. The philosophy of the Blue Gene/L hardware design is to use thousands to tens of
thousands of power efficient CPUs to achieve high performance in a relatively small foot-
print. This presents some new challenges for applications: First, to realize the performance
potential of Blue Gene/L, one must efficiently distribute the work across many thousands
of nodes, which requires very fine load balancing. Second, the software must take ad-
vantage of the communication hardware, as communication is typically the rate-limiting
factor at high node counts. Both of these challenges are exacerbated by the nature of bio-
logical molecular dynamics simulations: load balancing a large number of particle-particle
interactions remains a significant algorithmic challenge and the long-range nature of the
electrostatic potential leads to global data dependencies with concomitant communication
costs.

The use of Blue Gene hardware to advance our understanding of biologically impor-
tant processes has been an integral part of the Blue Gene mission from the very begin-
ning [Allen et al. 2001]. As part of that strategy, we started an application effort to support
the scientific goals of the project and to also act as a concrete test-bed for research into
application development for massively parallel machines. At the start the target machine
architecture was quite novel in concept [Allen et al. 2001] and the Blue Matter develop-
ment effort has tracked the evolution of the machine architecture with the goal of exploiting
hardware facilities on the target machine. As part of our efforts to exploit the current Blue
Gene/L machine architecture [Gara et al. 2005] we have explored the following:

—Use of the global collective network
—Machine topology effects (3d-torus) [Adiga et al. 2005]
—Low level interfaces vs. MPI
—Use of both processors on chip

At the highest level, the Blue Matter architecture specifies a modular decomposition
that spans multiple machines (Blue Gene/L and surrounding host machines) and has been
implemented as independent subprograms that cooperate via architected interfaces [Fitch
et al. 2003]. The Blue Matter parallel molecular dynamics engine makes extensive use
of C++ templates and concepts from generic programming [Austern 1999]. By defining
appropriate interfaces, we have been working towards a separation of the complexity of
molecular dynamics simulation from the complexity of parallel programming with mini-
mal impact on performance. This has enabled the systematic exploration of parallel de-
compositions for molecular dynamics targeting massively parallel architectures that we
have undertaken and whose latest phase is described in detail below.

The Blue Matter architecture requires infrastructure to support extensive regression and
validation because of the aggressive and experimental nature of the computational plat-
form we are targeting and because of its support for multiple force fields (the models and
their parameters used for classical molecular simulation). Many validation techniques are
needed to ensure the correctness of the implementation. The two main requirements are
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that the force field parameters be properly implemented, and that the integrator correctly
measures the forces on each atom and makes the appropriate update of position and veloc-
ity for each time step. Many aspects of MD validation have been discussed previously [van
Gunsteren and Mark 1998] including one technique specific to Blue Matter [Suits et al.
2005], and the end result is simulations that match the energies expected for each of the
force fields, with energy and temperature tightly conserved over a long simulation time.
The JACS publication [Pitman et al. 2005] was based on a 118ns NVE simulation of a
membrane-bound protein, and the total and kinetic energy drift over that long period of
simulation was negligible, indicating that there was consistently correct bookkeeping and
integration of all the interaction forces.

2. PARALLELIZATION STRATEGIES AND CHALLENGES

Classical molecular dynamics uses a model of the interactions between particles as the
basis for a numerical integration of the equations of motion of the n-body system. In
the case of biomolecular simulation, the existence of molecules with well-separated partial
charges means that long range electrostatic interactions must be treated properly or unphys-
ical behavior can be observed [Bader and Chandler 1992]. This issue is most commonly
addressed through the use of periodic boundary conditions and the Ewald [De Leeuw
et al. 1980] or related mesh [Deserno and Holm 1998] techniques. Use of these tech-
niques involves partitioning the computation of the long range forces into a real-space
component that is short-ranged and a reciprocal space component. In the case of the mesh
techniques, the reciprocal space component involves a convolution, implemented using
three-dimensional FFTs, of the “meshed” charge distribution with a kernel.

One of the design goals for the Blue Matter framework was to allow us to carry out a sys-
tematic exploration of parallelization strategies, progressing from the relatively straightfor-
ward to the more complex. Our starting point was a version of the “replicated data” [Plimp-
ton and Hendrickson 1996] approach that leveraged the Blue Gene/L hardware collective
network (to globalize positions) as well as the torus (to perform a global force reduc-
tion) [Germain et al. 2005]. While this approach makes load balancing straightforward,
its scalability is limited by the performance of the floating point “all reduce” collective
used for the forces.

In the current phase of this exploration, we have been using a variant of a spatial de-
composition that enables load balancing across a large number of nodes. Our requirements
included the ability to load balance based on pair interactions and the maintenance of local-
ity for the real-space portion of the calculation so that a “natural” domain decomposition
of the simulation volume onto the 3D torus layout of BG/L would minimize contention on
the links.

We implement this load balancing by nominally assigning each non-bonded force inter-
action to a point in space between the two interacting particles or fragments. A “fragment”
is a group of particles that are migrated together from node to node. Fragment location
is determined by a tag atom or center of geometry. Fragments always consist of parti-
cles within the same molecule although a molecule may be divided up into a number of
fragments. For convenience, fragments are currently constructed so that bonds subject to
distance constraints (rigid bonds) do not cross fragment boundaries. Fragments typically
contain five or fewer atoms. The cost of the interactions between two fragments is as-
signed to the point in space mid-way between the fragments subject to the minimum image
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Fig. 2. (a) Shows a view of the 43K atom Rhodopsin system. The effects of partitioning on load balance by
Orthogonal Recursive Bisection (ORB) on the workload at the interaction centers is shown in Figure (b). Figures
(c) and (d) show different views of the modifications to a uniform partitioning of space required in order to balance
the interaction workload–(d) shows a symbolic view of the volume of each cell after load balancing using a color
scale. As described in the text, the “cost” of computing the interactions between two fragments is assigned to
the point midway between the two fragments and space is partitioned using the ORB technique to equalize the
workload on each node while maintaining as natural a mapping of the simulation space onto the processor mesh
as possible.

convention used with periodic boundary conditions. The simulation volume is then parti-
tioned into sub-volumes with approximately equal computation costs assigned to them via
orthogonal (or optimal) recursive bisection (ORB) [Nyland et al. 1997]. The bisections are
carried out in such a way that there is a one-to-one correspondence between sub-volumes
and nodes and the number of partitions in each dimension is the same as the processor
mesh size in that dimension. Of course, as the molecular system evolves, the quality of the
load balance degrades, necessitating periodic re-partitionings of the system.

Although orthogonal recursive bisection has been used by others in the context of either
partitioning atoms or actual work-load [Nyland et al. 1997; Straatsma and McCammon
2001], our variant of this technique requires that the positions of the particles contained
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on a particular node only need to be broadcast to the set of nodes containing points within
approximately half the cut-off distance of the originating sub-volume. This ensures that
the positions of every particle-pair for which a non-bond interaction must be computed
will be available on one or more nodes within the intersection of the two broadcast spheres
as shown in Figure 1(b). It also provides a large distribution of load points on which the
bisection procedure can be carried out as shown in Figure 1. Additionally, this method
makes certain that the positions of particles required for bonded interactions are available
where needed and that, with moderate amounts of load imbalance, the positions required
for Particle-Particle-Particle Mesh Ewald (P3ME) [Deserno and Holm 1998] calculations
will be available as well. Although the number of nodes to which a particular node will
broadcast scales as the number of processors, p, the actual count is one eighth of that
required by a broadcast to a sphere with radius equal to the full cutoff. This technique also
places a limit on the number of inter-node hops required, which scales as p1/3.

After the node that is assigned a particular pair interaction receives the necessary posi-
tion information from the two originating nodes, it can compute the pair interaction, do a
local reduction of the forces on a given particle and return the contribution to the force on
a given particle to the “home” node of that particle. Note that this requires only a single
computation of the interaction. Also, though the pair interactions between two fragments
are nominally assigned to the mid-point, they can be performed on any node that receives
both particle positions as shown in Figure 1(b). Except for particles that are close to the
cut-off distance, it is therefore possible to adjust placement of the interaction computa-
tion, providing a mechanism for local load-balancing without a re-partitioning of the entire
system.

Other techniques that attempt to combine a spatial decomposition with the advantages
of the force decomposition invented by Plimpton and Hendrickson [Plimpton and Hen-
drickson 1996] have been proposed recently [Snir 2004; Shaw 2004], but neither outlines
a detailed strategy for dealing with load imbalance and to our knowledge, no published
performance results on biomolecular systems using either technique are available at this
time.

Our decomposition requires many-to-many personalized communication operations [Kale
et al. 2003] that are not represented by collective operations within the MPI standard.
These operations entail each node concurrently originating a broadcast of positions to a lo-
cal neighborhood and a corresponding concurrent reduction of computed forces back to the
originating node. Given a three-dimensional simulation domain and a three-dimensional
torus interconnect, communication locality on the machine can be achieved via a “natural”
mapping of the simulation domain onto the machine.

Although MPI only allows a task to participate in one collective operation at a time, it is
possible to construct equivalent function within the standard in several ways:

(1) Sequentially invoking MPI broadcast/reduce collectives with common members (col-
lectives involving disjoint task groups can proceed concurrently).

(2) Using ISEND/IRECV to implement the same communication function in a non-
serialized fashion.

(3) Use of ALLTOALLV on MPI COMM WORLD with many node pairs transferring no
data to implement the same communication function while avoiding MPI internal
message-handling overhead. This can be achieved by using a lower overhead mes-
saging protocol within the implementation of ALLTOALLV rather than just using a set
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of ISEND/IRECV calls.

We have implemented the second and third options and have found that as a result of
optimizations of the MPI collectives for BG/L [Almasi et al. 2005], the third option gives
superior performance. Even so, the realized performance on MPI does not yet reflect the
full capabilities of the hardware. We have implemented the collective operations required
by Blue Matter via the low-level System Programming Interface (SPI) of the Blue Gene/L
Advanced Diagnostics Environment [Giampapa et al. 2005]. This is the environment used
by the hardware team to test and validate hardware performance. Results comparing the
performance of selected communications kernels, such as the 3D FFT, on both the MPI and
SPI communication layers are presented below (see Figure 3 and Table I). These results
encouraged us to proceed with modifications of the full Blue Matter application to allow it
to run on optimized SPI-based communications routines with shared-memory exploitation
of both processors in virtual node mode.

We attribute the differences in performance observed in the communication micro-benchmarks
(Table I and Figure 3) and within the full Blue Matter application (presented in Table III
below) to the following factors:

(1) The ability to convey detailed knowledge about application requirements to the com-
munications constructs built on the SPI layer. Because communications patterns within
the application persist for varying periods of time, the SPI-based implementation can
partially or fully pre-compute headers and preallocate buffers. The most extreme ex-
ample of the benefits of this approach is the 3D-FFT for which the only change from
iteration to iteration is in the values placed within packets. This strategy takes advan-
tage of knowledge that cannot be passed via the MPI API.

(2) At the limits of scalability, when very small amounts of data are being sent by one
node to another, any additional header data required by MPI may cause a significant
incremental increase in the packet size. For a 1283 FFT on 16,384 nodes, we are
sending a single complex number in each packet and that packet is exactly the smallest
size permitted by the hardware.

(3) For the personalized many-to-many communication collectives required, it is possible
for the SPI-based implementation to take advantage of the hardware multicast capa-
bility of BG/L. Although the MPI ALLTOALLV collective can send common data to
multiple nodes, there is no mechanism for it to realize that the operation is a broadcast
to a subset of nodes and to take advantage of that fact in its implementation.

(4) Close coding of the communications kernel can make use of application commitments
to data size, alignment, and receive buffer availability required by the hardware. This
can frequently result in elimination of memory copies and may reduce cache misses.

In the results below, we have taken advantage of the second CPU on each BG/L node in
several different ways with the results compared for the 43,222 atom system in Table III.
The two varieties of dual core use are as follows:

—“Dual(1)”: Off-load the computation of the real-space non-bond interactions to the sec-
ond CPU (pure computation) while carrying out the k-space calculations in the first
CPU (including the communication-intensive 3D-FFTs). This allows us to realize some
amount of overlap between communication and computation.

—“Dual(2)”: Measure the amount of time being spent on real-space non-bond calculations
and if the real-space calculations take longer than the k-space calculations, then initially
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Fig. 3. Measurements of the execution time for the volumetric 3D-FFT [Eleftheriou et al. 2005] running on MPI
and on low level communications interfaces derived from the BG/L Advanced Diagnostics Environment [Gi-
ampapa et al. 2005] environment.

off-load a portion of the real space non-bond burden to the second CPU. In the case that
the k-space computation completes and there is still real-space work remaining, then the
real-space calculations are carried out on both cores until completed.

Thus far, “Dual(2)” has been implemented only within the SPI-based version of the code
although we plan to implement it within the MPI-based version as well because of the
advantages that it has at lower node counts when the real-space interactions consume more
time than the k-space interactions.

3. COMMUNICATIONS MICRO-BENCHMARKS COMPARING MPI TO LOW-LEVEL
CONSTRUCTS

As discussed above, we have been motivated to explore the use of the SPI used for hardware
diagnostics to implement the communications constructs required by Blue Matter in order
to fully exploit the hardware capabilities of the Blue Gene/L hardware, especially as we
probe the limits of scalability. The communications kernels that we characterized were the
3D-FFT, the spatial neighborhood broadcast, and the corresponding reduction.

In Figure 3 we show measurements of 3D-FFT performance on both MPI and Blue
Gene/L Advanced Diagnostics Environment SPI implementations. The preliminary results
on the SPI implementation are very encouraging, since the 1283 FFT continues to speed
up out to the limits of scalability where each node carries out a single 1D-FFT during each
phase of the row-column computation of the 3D-FFT [Eleftheriou et al. 2005]. Because
the bisectional bandwidth of a partition is sensitive to its geometry and because we are
scaling to sufficiently high node counts that the data for the 3D-FFT can sit in L1 cache,
the scaling of execution time with node count is not smooth.
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Node Count Broadcast Reduce
MPI SPI MPI SPI

512 (8 × 8 × 8) 1.44 ms 0.67 ms 1.80 ms 0.84 ms
1024 (8 × 8 × 16) 2.25 ms 1.17 ms 2.69 ms 1.25 ms
2048 (16 × 8 × 16) 2.30 ms 0.73 ms 2.42 ms 0.81 ms

Table I. Measurements of the performance of the MPI and SPI implementations of the neighborhood broadcast
and reduce operations used by Blue Matter. Measurements were made on the 43K atom Rhodopsin system under
conditions that guaranteed that both versions would be communicating the same volume of data.

Performance of the MPI and SPI implementations of the neighborhood broadcast and
reduce collectives are presented in Table I. Each position or force represents three double
precision numbers or 24 bytes of data. The volume of data handled in any one node’s
portion of these collectives will vary because of number density fluctuations in the molec-
ular system, but the measurements on the MPI and SPI implementations were done under
conditions that involve identical sets of communicating partners and equal communication
volumes.

4. MEASUREMENT METHODOLOGY

The simulation parameters for all of the Blue Matter results presented here (shown in Ta-
ble II) are the same as those used for production scientific runs or are the standard ones for
those benchmark systems. Because of restrictions on FFT sizes that exist in our current
3D-FFT implementation, our choices of mesh sizes are often larger (smaller mesh spacing)
than required for accurate calculations of energies and forces. Except for a specific compar-
ison with NAMD on a benchmark (ApoA1) that used a multiple time stepping technique,
all the Blue Matter results presented in this version of the paper were obtained using a
velocity Verlet integrator [Swope et al. 1982] that required the P3ME calculation on every
time step. This is the technique that when used in our production work on rhodopsin has
displayed excellent total energy conservation over long runs (tens to hundreds of nanosec-
onds) in the constant particle number (N), volume (V), and energy (E) ensemble. With the
use of the multiple time step (MTS) RESPA technique with P3ME [Zhou et al. 2001], the
P3ME calculation and the FFT’s used in that calculation can be performed less frequently.

Timings were obtained via post-analysis of application-level trace data produced by Blue
Matter. Using this facility, we can measure the time interval between any pair of trace
points on each node and extract statistical information about the set of measured intervals.
Blue Matter timings were obtained by averages over 100 time-steps (and all nodes), typ-
ically taken several hundred time-steps after ORB-based load-balancing. While diffusion
of particles in the system means that the quality of load-balance will decrease over time,
our preliminary measurements indicate that redoing the load-balancing by carrying out
the ORB process is only necessary after several hundred thousand time-steps and that the
performance impact is minimal.

5. PERFORMANCE RESULTS

Scalability results for the MPI version of Blue Matter on a variety of molecular systems
are plotted in Figure 4. These systems include solvated proteins of various sizes including
the Joint Amber-CHARMM benchmark (DHFR), the Mini FBP system, and the ApoA1
NAMD [Kale et al. 1999] benchmark system as well as the Rhodopsin system that we
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System Total Atoms Waters (Ions) Protein/Other Atoms Cutoff/Switch (Å) P3ME Mesh
DHFR 23,558 723 (0) 2489 8.0/1.0 643

Rhodopsin 43,222 7400 (30)
5608
15,336 (membrane)

9.0/1.0 1283, 64 × 1282

Mini FBP 50,764 16,769 (0) 457 9.0/1.0 1283

ApoA1 92,224 21,458 (0)
6410
21,440 (lipid)

10.0/2.0 1283

Table II. Details about the systems benchmarked with Blue Matter. Unless otherwise specified, runs were made
with the velocity Verlet integrator [Swope et al. 1982] using the (P3ME) technique to handle long range electro-
static interactions and were constant particle number, volume, and energy (NVE) simulations.

0.001

0.01

0.1

1

10 100 1000 10000

E
la

ps
ed

Ti
m

e
(s

ec
on

ds
)

Node Count

92K atom ApoA1
51K atom Mini FBP

43K atom Rhodopsin
23K atom DHFR

Fig. 4. MPI-based scalability results up to 4096 nodes for Blue Matter on a variety of molecular system sizes
and compositions. All of these runs used MPI communications, both CPUs in a mode that used one CPU for real
space non-bond calculations and the other for P3ME (distributed 3D-FFTs), and were compiled with options -O3
-qarch=440. The node mesh dimensions used were 4 × 4 × 2, 4 × 4 × 8, 8 × 8 × 8, 8 × 8 × 16, 8 × 16 × 16,
and 16 × 16 × 16.

have been running in production on Blue Gene/L prototype hardware. All of the plotted
results use both cores and when results are available for more than one set of partition
dimensions corresponding to the same node count, we only plot the results from the most
cubical partition. Results for the Rhodopsin 43K atom system in both single and dual core
mode for the MPI version and for two different dual core modes for BG/L ADE SPI version
are presented in Table III

The inversion in performance relative to system size for the Rhodopsin and Mini FBP
benchmarks seen in Figure 4 can be understood in terms of their compositional differences—
Rhodopsin has lipids while Mini FBP is mostly water. We believe that inhomogeneity is
not a factor because of the quality of the load balance obtained as seen in Figure 2.

Figure 5 shows the scalability of the major components of a time-step for the 43K atom
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Time/time-step (seconds)
Nodes MPI BG/L ADE SPI Atoms/node

Total Px Py Pz Single Dual(1) Dual(1) Dual(2)
32 4 4 2 0.4471 0.3646 1351

128 8 4 4 0.1322 0.0911 338
512 8 8 8 0.0317 0.0253 0.0234 0.0161 84

1024 16 8 8 0.0206 0.0185 0.0162 0.0116 42
2048 16 16 8 0.0137 0.0102 0.0097 0.0072 21
4096 32 16 8 0.0156 0.0135 0.0067 11
4096 16 16 16 0.0104 0.0090 0.0054 0.0039 11
8192 32 16 16 0.0034 5.3

16384 32 32 16 0.0031 2.6

Table III. Tabulated performance data for the 43K atom Rhodopsin system on BG/L. Time per time-step is pre-
sented for single core mode and two varieties of dual core mode. In single core mode, only one of the two CPUs
on the BG/L chip is actually used by the application. In dual(1) mode, the real space and k-space operations are
overlapped by doing k-space operations on CPU 0 and shipping real space operations to CPU 1 via shared mem-
ory where coherence is managed by the application. In dual(2) mode, only implemented in the BG/L ADE SPI
version at present, a measurement of the real space load is made and if the real space computations take longer
than the k-space computations, only a portion of the real-space computations are shipped to CPU 1 initially.
When this first portion of the real space computation is complete (and at the same time the k-space operations are
complete), the remaining real space computations are carried out on both cores. This provides a considerable win
at lower node counts and for larger systems where the real space burden dominates the k-space load. These data
were taken using a 2 femtosecond time-step, the value used for production work with this system.

Rhodopsin system. These data were obtained using Blue Matter operating on the BG/L
ADE SPI communications layer in Dual(2) mode. The real space computation bar rep-
resents the time spent by CPU 1 on its share of the real space computations. In Dual(2)
mode, CPU 0 carries out the P3ME operations while CPU 1 computes a portion of the
real space calculations required. The fraction of the real space calculations performed on
CPU 1 during this phase is chosen so that CPU 0 will complete the P3ME operations at the
same time that CPU 1 completes its initial real space computations. If there are any real
space calculations that remain to be done after this initial phase, this work is split equally
between CPU 0 and CPU 1. Since our measurement tool only supplies information about
CPU 0, we infer the amount of time spent on real space calculations by CPU 2 by adding
up the amount of time spent on P3ME with the time spent on the “excess” real space cal-
culations by CPU 0. When all of the real space calculations can be completed by CPU 1 in
less time than it takes CPU 0 to complete the P3ME operations, then all we can do is place
an upper bound on the amount of time spent by CPU 1 on real space. This is the case in
Figure 5 for the data taken at 16,384 nodes.

As a very rough way to place Blue Matter running on Blue Gene/L in context, Figure 6
compares published results [Phillips et al. 2002] using the NAMD package [Kale et al.
1999] on the Lemieux system at the Pittsburgh Supercomputing Center and Blue Matter
on Blue Gene/L. The results on Lemieux were obtained using a version of the Charm++
library written to the Elan communication library provided by Quadrics. The Blue Matter
on Blue Gene/L results were obtained using using the “Dual(2)” version of Blue Matter op-
erating on the BG/L ADE SPI communications layer. The systems benchmarked by Blue
Matter and NAMD (ApoA) are identical, and we have made every effort to use either the
same (cut-off distances) or higher cost (FFT mesh size) parameters in the Blue Matter runs
as were used in the NAMD study to get as close as possible to an “apples-to-apples” com-
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Fig. 5. This figure shows the relative contributions of major components of a time-step for the Rhodopsin sys-
tem using the BG/L ADE SPI implementation. The data were taken in dual(2) core mode in k-space (P3ME)
calculations are carried out on CPU 0 and part of real space (sufficient to balance k-space) is carried out on CPU
1. If any real space work remains after completing the k-space calculations, both cores work on the remaining
real space computations. The “Real Space” bar represents the amount of time spent on real space calculations on
CPU 1 and it is inferred by measuring the amount of time spent on real space calculations on CPU 0 after the
k-space calculations complete and adding that time to the time spent on k-space. Once the real space calculations
take less time than the k-space calculations, there is presently no mechanism to estimate them and therefore the
“Real Space” bar at 16,384 nodes is equal in height to the “P3ME” bar because we only know that real space is
taking some amount of time that is less than or equal to the time consumed by the P3ME (k-space) calculations.

Node Count Time/Time-step (sec.) GFLOP/sec.
512 0.0329 140
1024 0.0209 220
2048 0.0125 369
4096 0.0070 657
8192 0.0047 993
16384 0.0029 1621

Table IV. Performance of Blue Matter on the ApoA1 system using multiple time-stepping (P3ME every four time
steps) including FLOP rates derived from floating point performance counters in the BG/L chip.

parison. Also, our comparison was made using a multiple time step integration technique
that only carried out the P3ME operations once in every four time steps because this was
the mode that gave NAMD the best performance on the PSC Lemieux system. Table IV
gives the time per time-step and the realized floating point performance for Blue Matter
running on the ApoA1 system.
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(b) Scalability on ApoA1 system with nomograms of throughput. Ideal scalability would
be a horizontal line in this plot.

Fig. 6. This plot shows a comparison of the performance of NAMD on the Lemieux Alpha system at the Pittsburgh
Supercomputing Center with that of Blue Matter on Blue Gene/L. The molecular system benchmarked was the
92,224 atom ApoA1 system. The NAMD results were obtained using a multiple time-stepping technique to carry
out the Particle Mesh Ewald calculation on every fourth time-step (with a mesh size of 108 × 108 × 80) [Phillips
et al. 2002] and used a specially tuned version of the Charm++ library written to the Elan communication library
provided by Quadrics. In carrying out the measurements with Blue Matter, we attempted to match the parameters
reported in the NAMD paper as closely as possible and made our measurements in an NVE (constant particle
number, volume, and energy) simulation using a multiple time stepping technique (RESPA [Tuckerman et al.
1992]) with P3ME on every fourth time step (with a mesh size of 128 × 128 × 128). All communication was
carried out using the BG/L ADE SPI library [Giampapa et al. 2005].
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6. SUMMARY AND CONCLUSIONS

We have described a novel n-body spatial decomposition and a collective communications
technique implemented on both MPI and low level hardware interfaces. These constructs
have been integrated into the Blue Matter molecular dynamics framework and we have
presented strong scaling data on a variety of molecular systems using an MPI-based im-
plementation on Blue Gene/L. Using Blue Matter on BG/L with communications via the
BG/L ADE SPI interface, we have achieved close to 3 milliseconds per time-step on 16,384
nodes for a 43,222 atom protein/lipid system. The continued speed-up through values of
less than three atoms/node is the first time that this level of strong scaling has been obtained
with classical molecular dynamics.

The performance achieved by Blue Matter using the decomposition described in this
paper implemented on both MPI and SPI demonstrates the efficacy of our approach. The
improvement in performance over the MPI baseline obtained through use of the SPI com-
munications interface shows the advantages that can be realized through use of application-
aware communications collectives that fully leverage the available hardware capabilities.
This improvement and the results obtained through use of load balancing via the ORB
technique as described above also provide support for the hypothesis that planning can
give better results than adaptivity for very high levels of scalability.

The time-to-solution measured for the 43,222 atom rhodopsin system on 16,384 nodes
corresponds to 50 nanoseconds of simulation time per day or a microsecond of simulation
in only twenty days. This capability enables studies of biologically relevant systems on
time-scales that were previously impractical. Scientific results using Blue Matter on pro-
totype BG/L hardware have already been published and additional scientific studies are
underway.

Work is currently underway to explore further optimizations of the 3D-FFT, such as
implementing a real FFT to reduce communication data volume below that of the current
complex FFT implementation. We are also continuing to refine our load balancing tech-
niques and are working with the compiler team to improve the floating point efficiency of
the Blue Matter code.
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