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Abstract
This paper describes a parallel strategy to extend the scala-
bility of a small 3D FFT on thousands of Blue Gene/L pro-
cessors. The approach is to execute the intermediate phases
of the 3D FFT on smaller processor subsets. Performance
measurements of the standalone 3D FFT on two communi-
cation protocols, MPI and BG/L ADE [18] are presented.
While the performance of the 3D-FFT with MPI-based and
BG/L ADE-based implementations exhibited qualitatively
similar behavior, the BG/L ADE-based version has lower
communication cost than the MPI based version for small
message sizes. Measurements also show that the proposed
approach is effective in improving Particle-Mesh-based N-
body simulation performance significantly at the limits of
scalability.

Categories and Subject Descriptors CR-number [subcat-
egory]: third-level

General Terms algorithms, FFT, transposed, performance

Keywords distributed algorithms,Blue Gene/L, distributed
transpose, computational biology

1. Introduction
The three dimensional Fast Fourier Transform (3D-FFT)
and other spectral methods that require transpose opera-
tions are performance critical components in a number of
scientific and engineering applications including molecu-
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lar dynamics [13, 12, 24, 26, 22] and climate model-
ing. The 3D FFT algorithm and its performance on dif-
ferent machine architecture has been extensively studied
[15, 16, 6, 8, 9, 31, 28, 19, 23, 5]. The implementation
and performance of a highly scalable 3D-FFT algorithm
on Blue Gene/L supercomputer [17, 1] that uses the row-
column method and distributes the N2 1D-FFTs required
in each phase of a N × N × N FFT have been described
previously [10, 11]. In this paper, we present a more de-
tailed study of the effects of machine geometry and map-
ping of the algorithm to the machine on the performance
of the distributed transpose used for the 3D-FFT. For ex-
ample, the original implementation of the distributed trans-
pose always distributed the data over the largest number of
nodes possible. In order to optimize performance, it is in-
teresting to explore what the effects of distributing the data
over a subset of nodes might be. Characterizing the trade-
off between sending fewer larger messages (with the ad-
vantage that header overheads are amortized over a larger
payload) and carrying out more computation on each of the
nodes within the subset used is of the objective of this work.
However, our goal is to provide a scalable 3D FFT on thou-
sands of processor where the number of processors exceeds
the number of independent 1D-FFTs to be computed for a
given problem size. This flexibility can be used to extend
the scalability of molecular dynamics applications such as
Blue Matter.

As part of this study we also describe a generalization of
the previously described parallel implementation that has a
number of advantages:

• Supports scalability to more than N2 nodes for comput-
ing N3 FFT.

• Enables flexibility in the choice of the number of nodes
used for the distributed transpose operation to maximize
efficiency.
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• Enables more flexibility in task assignment within an
application, e.g. a 3D-FFT can be performed on a subset
of nodes while the other nodes can be used for other
application work.

• Permits use of real-to-complex 3D FFT on larger parti-
tion sizes (real-to-complex 3D-FFT sends half as much
data during the transpose operation and effectively does
half as many 1D FFTs because of symmetry.

• In some applications that use a 3D FFT to evaluate a
convolution, it may be possible to use spherical cut-
offs, to reduce communication volumes and to eliminate
computations (depending on the structure of functions
being convolved).

This paper is organized as follows: Section 3 outlines
the network communications on BG/L supercomputer. Sec-
tions 4 and 4.2 present performance results for the dis-
tributed transpose and the Blue Matter molecular simula-
tion software, respectively. Finally, Section 5 summarizes
the conclusions.

2. Software Implementation
The 3D Fast Fourier Transform (3D-FFT) for Blue Gene/L
is a C++ template-based parallel library. The template pa-
rameters include a communication class that encapsulates
the details of the all-to-allv communication collective re-
quired for the distributed transpose, a sequential 1D-FFT
class and a type class that represents the data type declara-
tion . We have implemented the all-to-allv communication
operation using two different communications layers, MPI
and the Blue Gene/L Advanced Diagnostic Environment
(BG/L ADE) [18]. The BG/L MPI is an optimized port of
the MPICH2 library while the BG/L ADE was developed
by the BG/L hardware group for machine bring-up and di-
agnostics. Currently, 1D-FFTs from the IBM ESSL [21]
product, FFTW [16] and FFTW-GEL [25] are supported
as building blocks for the 3D-FFT. In the results presented
here we use the FFTW-GEL library developed by the Tech-
nical University of Vienna which currently achieves the best
single node performance on BG/L. Finally, the library sup-
ports double and float data types.

The 3D FFT library implementation comprises two
phases, planning and compute. The planning phase in-
cludes:

• heuristic function that is used to determine machine
partition based on data sizes

• classes that are used to pre-allocate all the communica-
tion and computation buffers used in the FFT phases

• construction of the appropriate group communicators in
the MPI based approach.

The planning class is responsible for managing the data
distribution. The user can choose the appropriate mapping

at run time. If a data mapping is not specified at run time,
the default technique is: Check to see if there are sufficient
1D-FFTs to keep all the processors in the system busy. If
yes, it uses the previously published implementation and if
not, data mapping algorithms are used.

Next, the sub-communicators required for communi-
cation are created. Once the parallel approach has been
selected, the code subdivides the world communicator
group into smaller row and plane shaped non-overlapping
processor-groups for each FFT communication phase for
the 2 decomposition approach. Note that the user can also
choose to use 1D decomposition (slab decomposition); in
that case the world communicator group is subdivided into
a planes of nodes (perpendicular to a single axis).

In addition, the planning class is responsible for pre-
calculating the lists with the destination and receiving in-
formation. Moreover, the data from the collective operation
needs to be reordered in order to perform the sequential
FFT. We prepare the list in such a way that evaluation of
single 1D FFT is possible as soon as the data is received
and we put the transformed data in the correct order in the
send buffer for the next communication phase. This mini-
mizes the overhead associated with data copying.

The compute phase uses the communication and com-
pute classes. All communications are executed on processor
groups using all-to-allv collective operations. In the BG/L
ADE-based approach, we have implemented the all-to-allv
collective required by the FFT via a low level System Pro-
gramming Interface (SPI). The SPI interface provides a di-
rect access to the BG/L network-hardware. The major dif-
ferences between the SPI and MPI all-to-allv implementa-
tions are that the SPI packet-headers are prepared at the ini-
tialization time while in the MPI-based implementation the
packet headers have to be evaluated at all-to-allv runtime
and that the MPI implementation requires larger messages
to be sent at the limits of scalability because of the messag-
ing protocol used. The computation step simply evaluates
all of the 1D-FFTs required for each 3D-FFT phase inde-
pendently and leaves the data in the transformed format.
The compute class is decoupled from the data decomposi-
tion which allows deferral of the choice of data decompo-
sition until runtime. Since the library is templatized on the
1D FFT, any serial 1D-FFT implementation may be used
within the compute class.

3. Communications on BG/L
The BGL/L ASIC supports five different communication
networks [17], only two of which are of interest to appli-
cation developers: torus [2] and collective communication
network. The torus is the main communication network for
performing point to point communication and it provides
high bandwidth nearest neighbor connectivity. Each node
has six bi-directional links to connect with of its neighbor

2 2007/8/6



nodes with 175MB/sec bandwidth on each link. The net-
work hardware delivers packets of variable length ranging
from 32 bytes to 256 bytes with a granularity of 32 bytes.
The packet header is of size 14 bytes. 8 bytes for link level
protocol information, 2 bytes for the acknowledgment and
4 bytes for the checksum.The packets may be dynamically
or statically routed.

The torus network supports adaptive routing to enhance
the network performance. Adaptive routing allows pack-
ets to dynamically find the less congested and minimum
path between the sender and nodes. The packet headers in-
clude six bits to indicate the direction of the packet routed
(x−, x+, y−, y+, z−, z+) [30].

The average number of hops is calculated based on the
Manhattan distance between two nodes. The Manhattan
distance between a pair of nodes, p and q is given by

Hops(p, q) = |xp − xq|+ |yp − yq|+ |zp − zq|

.
The average number of hops for all the messages send

by a given node is given by [30].

< NHops >=
∑

NHops
j ×BBytes

j /
∑

BBytes
j

where NHops
j is the number of hops required for the jth

message and BBytes
j is the corresponding message size.

The 3D-FFT requires an all-to-all on a subset of nodes
comprising a column or plane within the three dimensional
torus. Let’s consider a 16 × 32 × 16 torus and an all-to-all
communication along the yz plane. In this case, the number
of hops in y direction is double of that the z dimension. That
is if x is 100% busy, then y is only 50% busy. Thus the link
utilization is only 75%, which means that the bandwidth is
the same as in the 32x32 plane-nodes.

The 3D FFT implementation can currently use either of
two communication layers: SPI and MPI. The SPI was de-
veloped by the BG/L hardware group for machine bring-
up and diagnostics. The BG/L MPI implementation is an
optimized port of the MPICH2 library [3, 4]. The major
difference between MPI and SPI is that the SPI interface
provides direct access to the BG/L network hardware while
the MPI interface provides a generic message passing and
collective API for end user applications. The general pur-
pose MPI communication layer requires additional proto-
col which implies larger packet headers and this eventually
affects performance at the limits of scalability.

Since the all-to-all operation is essential for the 3D-FFT,
we developed an efficient and scalable implementation of
the all-to-all collective operation for small message sizes
using the SPI layer. As an aid in understanding the perfor-
mance of the transpose operation we will briefly compare
the all-to-all implementations in the SPI and MPI commu-
nication layers. In the MPI implementation, the all-to-all

Figure 1. Full distribution. Each red square represents a
processor with data

Figure 2. Compressed Checkerboard Distribution. Each
red square represents a processor with data while a white
square represents a processor without any data

communication has larger overhead for smaller message
sizes because its smallest packet size is 64 bytes versus
the 32 bytes used by the SPI implementation. Further, the
SPI implementation of the all-to-all allows data transfer be-
tween the sending and receiving nodes without any protocol
overhead of the receivers (eager protocol). That is, the SPI
all-to-all doesn’t perform flow control; the sending nodes
just push data out and the receivers will know from con-
text what to do with it. The MPI all-to-all global collec-
tive sends more context around with messages and there
needs to be some way for a receiver to tell a sender to stop
sending. Both the SPI and MPI all-to-all operations ran-
domize the sending of packets to destination nodes to avoid
creating network hot-spots. Finally, we have performed an
application-specific optimization of the SPI implementation
of the all-to-all by precalculating all the packet headers dur-
ing the initialization phase while MPI generates them dy-
namically.

4. Results
In this section we explore the effects of mapping on the
performance of the transpose operation on BG/L. Because
the transpose required by the BGL3DFFT algorithm uses
three all-to-all communication operations, the first along
independent node columns and the rest along independent
node planes, the results presented below are for columnar
and planar all-to-all collectives implemented with both the
MPI and SPI communication layers. Because of the lower
overhead incurred by the SPI implementation, the effects
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Figure 3. Expanded Checkerboard Distribution.Each red
square represents a processor with data while a white square
represents a processor without any data

of mapping are more pronounced in that case and our dis-
cussion of results focuses on the SPI implementation. The
motivation is two fold: i) to evaluate the cost of individ-
ual transpose operations using three different data distri-
butions; and ii) show that the expanded checkerboard dis-
tribution slightly improves 3D-FFT performance and thus
extends the scalability of Blue Matter on BG/L.

4.1 Distributed Transpose performance
Consider performing a 643 complex to complex (double
precision) 3D-FFT on two different partition sizes, 16 ×
32 × 16 and 16 × 16 × 16 nodes where both use only half
of the available nodes in each partition for 1D-FFT com-
putation. The nodes used for 1D-FFT computation in each
partition form a checkerboard pattern. We refer to them as
the “expanded checkerboard distribution” the “compressed
checkerboard distribution” respectively. The data is initially
distributed equally to all nodes, each of which holds, nx ×
ny×nz complex double data, where ni = Ni

Pi
and i denotes

x, y or z.
Figures 2 and 3 illustrate the data distributions (in a sin-

gle plane) of each communication phase for both “checker-
board” distributions. Figure 1 shows the corresponding data
distributions for computing the 3D-FFT using all 4096
nodes, the “full distribution”, for comparison.

Tables 1, 2 and 3 show the performance data for the full
and both checkerboard distributions. Column one describes
the data decomposition and the number of nodes perform-
ing the 3D-FFT out of the total available nodes in the ma-
chine. For example, checkerboard (4096/8192) means that
originally, the data is distributed on 8192 nodes while the

3D-FFT is computed on 4096 nodes. Columns 4 and 5 con-
tain the total elapsed time per communication phase for the
corresponding data distributions. In all the performance ta-
bles, we provide the results in terms of average elapsed time
over 100 runs (omitting the first run). The error bars signify
the standard deviation from the average value.

Columns 4 and 5 in Tables 1, 2, and 3 compare the
distributed transpose performance in all 3D-FFT communi-
cation phases on both the MPI and SPI-based implementa-
tions. In general, all the MPI and SPI results are consistent
in the sense that they exhibit similar relative performance
behavior for a given case. We observe that the SPI-based
all-to-all implementation is about 2 to 4 times faster than
the MPI-based implementation for very small size mes-
sages. For small messages the software overhead associated
with sending a packet in the MPI-based implementation is
larger than the SPI. For example, in the expanded checker-
board distribution each node sends data comprising a com-
plex double (32 bytes) in the planar transpose. We note that
32 bytes data fit in a single SPI packet while in the MPI-
based approach the messages are double the size (64 bytes,
MPI has 3 quads of protocol, 48 bytes). Thus, the SPI ap-
proach is superior at the limits of scalability.

Table 1 shows the performance of the all-to-all opera-
tion along the z column nodes and Figure 4 the z plane of
all studied decompositions. Let’s compare the compressed
checkerboard decomposition with the full decomposition
using the SPI results. Since all the 1D-FFTs along the z di-
mension are independent we need only consider the case
of a one-dimensional grid of the Pz nodes that compute
nx × ny = 16 one-dimensional FFTs of size 64. In both
distributions, the number of nodes along the z axis is the
same, Pz . In the full distribution every node exchanges data
with all the nodes in the same column, while in the checker-
board distribution each node sends data only to half of the
nodes in the column. For instance, in the full distributions,
each node in a column in the torus sends packets of data
length of 110 bytes. That is, a 64 byte payload (4 complex
doubles) will fit into a bytes packet. Each packet also has a
4 byte CRC appended to it and results in an 8 byte acknowl-
edgment; in addition there are typically 2 bytes of unused
space in each packet. Thus a single 64 byte packet results
in a 100 byte load on the link with a packet utilization of
64/110 = 58%.

In the checkerboard distribution, there are 16 sender
nodes, each sending 8 complex doubles to 8 destination
nodes along a column of nodes in the torus. That is, each
nodes in the checkerboard distribution sends a packet of
size 174 bytes to alternate nodes, with packet utilization
128/174 = 73%.

The average number of hops is 4, the same for both
distributions, using the torus network. Overall we observe
efficiency 29.58/35.841 = 0.82 for the communication
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(a) Full distribution on z column of processors. Each column of proces-
sor along the z axis computes 16 1D-FFTs of size 64, with each proces-
sor computing one 1D FFT. In the communication phase, all nodes of
the left blue column sends data to the nodes of the column on the right
of the arrow.

(b) Compressed checkerboard distribution on the z column of proces-
sors. Each column of processor along the z axis computes 16 1D-FFTs
of size 64, with each alternative processor computing two 1D FFTs. In
the communication phase, all nodes of the left blue column sends data to
half of the nodes(filled circles) of the column on the right of the arrow.

(c) Expanded Checkerboard on z column of processors. Each column
of processor along the z axis computes 8 1D-FFTs of size 64, with
each alternative processor computing one 1D FFTs. In the communi-
cation phase, all nodes of the left blue column sends data to half of the
nodes(filled circles) of the column on the right of the arrow.

Figure 4. Data distributions along the z processor column.
The filled circles represent nodes with data, while the empty
represent nodes without any data. On the compute phase,
each column of processors along the z axis computes nx ×
ny = Nx/Px × Ny/Py 1D-FFTs of size Nz, with each
processor computing (nx × ny)/Pz 1D FFTs with ni =
Ni/Pi.

cost along a given column in the compressed checker-
board distribution, which is consistent with the prediction
of 58%/73% = 0.79.

Now, let’s compare the full distribution to the expanded
checkerboard processor mesh. Every processor along a col-
umn of nodes has to compute 16 1D-FFTs in the full dis-
tribution and 8 1D-FFTs in the expanded checkerboard dis-
tribution. In both, each node sends messages of the same
length, 110 bytes. However, in the checkerboard distribu-
tion the bandwidth required is halved since each node sends
half as many packets. The ratio of the measured commu-
nication times is 35.841/19.944 = 1.90 very close to the
factor of two predicted from bandwidth considerations.

Table 2 presents the all-to-all communication cost in
the zy-plane. For clarity, Figure 5 shows only the data
distribution along a single plane zy of nodes for all studied
distributions. Let’s first compare the performance of all-to-
all in the full and compressed checkerboard distribution.

In the full distribution, all nodes (256 total) exchange
messages of containing a single complex double with 64
nodes (including itself) in the plane, with packet utilization
of 32/32 = 1. In the compressed distribution, half of
the nodes (128 total) exchange data with a packet size of
78 bytes (2 complex doubles) with 64 nodes in a plane
of nodes, with packet utilization 64/78 = 0.82. Thus, we
expect (32 × 256)/(78 × 128) = 0.85 which is consistent
with the ratio of measured times, 55.305/58.131 = 0.95

z

y

(a) Full zy plane of 16 × 16 processors. Each zy plane computes 256
1D-FFTs of size 64, with each processor computing one 1D FFT. In the
communication phase, all 256 nodes of the left rectangle sends data to
64 nodes of the right of the arrow.

z

y

(b) Compressed checkerboard zy plane of 16 × 16 processors. Each
zy plane of processors computes 256 1D-FFTs of size 64, with each
processor computing two 1D FFT. In the communication phase, all 128
nodes (filled circles) of the left rectangle send data to 64 nodes of the
rectangle on the right of the arrow.

z

y

(c) Expanded checkerboard zy plane of 16 × 32 processors. Each zy
plane of processors computes 256 1D-FFTs of size 64 along the y di-
mension, with each processor computing one 1D FFT. In the communi-
cation phase, all 256 nodes(filled circles) of the left rectangle send data
to 64 nodes(filled circles) of the rectangles on the right of the arrow.

Figure 5. Data distributions along the zy processor plane
of size Pz × Py . The filled circle represent nodes with
data, while the empty represent nodes without any data. On
the compute phase, each zy plane of processors computes
nx ×Nz 1D-FFTs of size Ny, with ni = Ni/Pi.
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x

y

(a) Full yx plane of 16 × 16 processors. Each yx plane of processors
computes 256 1D-FFTs of size 64, with each processor computing one
1D FFT. In the communication phase, all 256 nodes of the left rectangle
send data to 64 nodes of the rectangle on the right of the arrow.

x

y

(b) Compressed checkerboard yx plane of 16 × 16. Each yx plane
of processors computes 256 1D-FFTs of size 64, with each processor
computing one 1D FFT. In the communication phase, 128 alternative
nodes(filled circles) of the left rectangle send data to the 32 nodes of the
rectangle on the right of the arrow.

x

y

(c) Expanded checkerboard yx plane of 32 × 16 processors. Each yx
plane of processors computes 256 1D-FFTs of size 64 along the y di-
mension, with each processor computing one 1D FFT. In the communi-
cation phase, all 256 nodes(filled circles) of the left rectangles send data
to 64 nodes(filled circles) of the rectangles on the right of the arrow.

Figure 6. Data distributions along the yx processor plane.
The filled circle represent nodes with data, while the empty
represent nodes without any data. On the compute phase,
each yx plane of processors computesNy×nz 1D-FFTs of
size Nx, with ni = Ni/Pi.

Next, consider the performance of the expanded checker-
board (4096/8192) distribution versus that of the full dis-
tribution (4096/4096). In the expanded checkerboard de-
composition the communication is performed on alternate
nodes. That is, half of the nodes, 256 out of 512 don’t ex-
change any messages. Each of the remaining 256 nodes
sends packets containing one complex double to 64 (in-
cluding self) destination nodes. Similarly, in the full distri-
butions each node (256 out of 256) sends a single complex
double to 64 destination nodes. Thus, the total bandwidth
is the same in both distributions. Overall, the performance
cost of the communication along the nodes in a plane is
sightly higher in the full distribution.

Table 3 presents the all-to-all performance for the xy
planes. While Figure ?? presents the yx plane of all studied
decompositions. Each node (256 total) in a plane, sends a
single complex double to 64 nodes in the full distribution.
In the compressed checkerboard, each node (128 total),
sends 4 complex doubles to 32 nodes. Thus, we expect
(256nodes × 32bytes)/(128nodes × 96bytes) = 0.67 for
the performance ratio consistent with the measured values
43.46/60.48 = 0.71. In the expanded checkerboard yx
plane, each of the filled 256 nodes (total 512) sends data
to 64 nodes. Thus, the total bandwidth is the same in both
full and expanded distribution, the latency is higher in the
expanded distribution.

Finally, let’s consider the expanded distributions. Half
of the nodes (256 out of 512) send a single complex double
to 64 nodes, thus the bandwidth is the same as the one in
the full distribution. However, the latency is higher since
we have double the number of nodes along the y axis. Thus
the measured performance cost is higher in the expanded
checkerboard distribution as expected.

We also compare the performance impacts of the topol-
ogy on the all-to-allv communication. The all-to-allv com-
munication cost along the same plane is much worse on
“non-cubic configurations due to internal network conges-
tion” [3]. Similar analysis of the bandwidth and the average
number of hops indicates that the performance cost of all 3
communication phases is consistent with the measured val-
ues for both geometries of node partitions.

had recently published their work on improving the per-
formance on non-cubic partition.

4.2 Blue Matter application results
The most commonly used methods for efficient calcula-
tion of the long range electrostatic interactions interactions
in molecular dynamics simulations are the Particle Mesh
Ewald (PME)[7] and the Particle Particle Mesh Ewald
method (P3ME)[20]. Both methods involve the use of trans-
form techniques requiring computation of 3D-FFTs hav-
ing global data dependencies. The highly scalable Blue
Matter code currently uses the P3ME method in a paral-
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Description Node Node Time (µsec.)
Count Geom. MPI SPI

Full distribution (row) 4096 8× 32× 16 77.568± 0.135 36.018± 0.279
Full distribution (cubic) 4096 16× 16× 16 77.337± 0.252 35.841± 0.310
Compressed Checkerboard (2048/4096) 4096 8× 32× 16 76.423± 0.641 29.072± 0.432
Compressed Checkerboard (2048/4096) 4096 16× 16× 16 74.424± 0.215 29.580± 0.515
Expanded Checkerboard (4096/8192) 8192 16× 32× 16 67.362± 0.242 19.944± 0.232

Table 1. All-to-all prior to FFT along z-axis

Description Node Node Time (µsec.)
Count Geom. MPI SPI

Full distribution (row) 4096 8× 32× 16 218.949± .778 91.677± 0.819
Full distribution (cube) 4096 16× 16× 16 155.823± 1.044 55.305± 0.747
Compressed Checkerboard (2048/4096) 4096 8× 32× 16 217.588± 0.225 82.659± 1.370
Compressed Checkerboard (2048/4096) 4096 16× 16× 16 157.623± 0.980 58.131± 0.922
Expanded Checkerboard (4096/8192) 8192 16× 32× 16 186.449± 0.468 52.849± 0.882

Table 2. All-to-all prior to FFT along y-axis

Description Node Node Time (µsec.)
Count Geom. MPI SPI

Full distribution (row) 4096 8× 32× 16 237.470± 1.092 170.674± 0.915
Full distribution (cube) 4096 16× 16× 16 153.926± 0.326 60.477± 0.702
Compressed Checkerboard (2048/4096) 4096 8× 32× 16 194.075± 1.212 113.512± 0.512
Compressed Checkerboard (2048/4096) 4096 16× 16× 16 125.751± 0.756 43.459± 0.944
Expanded Checkerboard (4096/8192) 8192 16× 32× 16 213.696± 1.020 85.362± 0.767

Table 3. All-to-all prior to FFT along x-axis

lel decomposition that utilizes one of the two BlueGene
processor cores for the 3D-FFT computation and the other
for the calculation of the real space portion of the non-
bond interactions[14]. In the limit of very strong scaling
the P3ME convolution step is expected to be the limiting
factor for scalability. The new parallel decomposition of
the 3D-FFT presented here enables improved strong scala-
bility, e.g. continued speed-up of a 643 FFT to more than
4096 nodes which is the node count at which each node
performs a single 1D-FFT.

Figure 7 shows the elapsed time per time-step of the
SOPE molecular system. The SOPE[27] benchmark system
consists of 13,758 atoms, utilizes the Velocity Verlet inte-
gration technique[29], and performs two 3D-FFTs on every
time-step. The results presented here were obtained using
BlueMatter software with V5 method running on the BG/L
ADE communications SPI[14].

5. Conclusion
This paper provides a study of the effects of several differ-
ent parallel mappings of three communication phases of a
3D-FFT on large number of processors. The results of our

empirical studies using the 3D-FFT show the impact of the
mapping techniques and the machine physical topology on
the communication performance of distributed memory al-
gorithm.

Our motivation is to provide a scalable 3D FFT on thou-
sands of processor where the number of processors exceeds
the number independent 1D-FFTs to be computed for a
given problem size, expanded checkerboard decomposition,
without any hit in the performance. The expanded checker-
board decomposition is used by the Blue Matter molec-
ular dynamics application, which utilize one of the cores
to evaluate the 3D FFT and the other core to evaluate the
real space, to scale beyond one atom per BG/L node. The
expanded checkerboard decomposition will enable applica-
tions which utilize one of the two BG/L cores per node to
compute 3D-FFT to scale to thousands of nodes.
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13,758 atom system are dramatic. Note that generally use of a coarser mesh for the 3D-FFT decreases the accuracy of the
computatation of the long range electrostatic forces.
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