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INCREASED PRECISION IN THE
COMPUTATION OF A RECIPROCAL
SQUARE ROOT

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application of U.S.
patent application Ser. No. 10/632,362 filed on Jul. 31, 2003
now U.S. Pat. No. 7,313,584, the contents of which are hereby
fully incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to increased precision for the
computation of a reciprocal square root.

BACKGROUND OF THE INVENTION

In microprocessor design, it is not unusual for the designer
of the chip to specify that certain functions are to be per-
formed by the chip. The implementation of the specified
functions is then left to another designer. Two such functions
which are specified for some microprocessors are the square
root function ‘sqrt(x)’ and the reciprocal square root function
‘1/sqrt(x)’. One microprocessor family for which these func-
tions have been specified and implemented is the IBM Pow-
erPC. Such a microprocessor is used in the IBM Blue Gene/L.
Supercomputer (“BG/L”). See [http://[www.ibm.com/chips/
products.powerpc/newsletter/aug2001/new-prod3.html.

The reciprocal square root function is necessary in a num-
ber of calculations used in a variety of applications, however,
it generally is used in connection with determining the direc-
tion of the vector between any two points in space. By way of
example, such a function is used in calculating the direction
and magnitude of the force between pairs of atoms when
simulating the motion of protein molecules in water solution.
The function is also used in calculating the best estimate of
the rotation and shift between a pair of images of a triangle,
i.e., where the triangle might be defined by 3 points picked out
on a digital image, such as an image of a fingerprint; for the
purpose of matching a ‘candidate’ fingerprint in a large set of
‘reference’ fingerprints.

While the reciprocal square root function may be imple-
mented in a number of ways, there is no standard for its
precision. The function should optimally return the double-
precision floating point number nearest to the reciprocal of
the square root of its argument ‘x’. Compare IEEE Standard
for Binary Floating-Point Arithmetic (IEEE 754). ANSI/
IEEE Std 754-1985, IEEE Standard for Binary Floating-
Point Arithmetic, IEEE, New York, 1985. To arrive at such a
result, however, requires significant computational resources
such as processing time.

In most computational situations, however, it is sufficient
to generate an approximation of the reciprocal square root of
a number that is precise to some number of bits smaller than
the standard fifty three (53) bits. Known implementations of
the reciprocal square root function involve a trade-off
between precision and computational resources, i.e., process-
ing time.

There thus is a need for a method and system for calculat-
ing the reciprocal of a square root of a number that provides
for both greater accuracy and greater precision without
increasing the need for computing time and resources.
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2
SUMMARY OF THE INVENTION

Inaccordance with at least one presently preferred embodi-
ment of the present invention there is now broadly contem-
plated increased precision in the computation of the recipro-
cal square root of a number

One aspect of the present invention provides a method of
for calculating the reciprocal square root of a number, com-
prising the steps of: forming a piecewise-linear estimate for
the reciprocal square root of a number; rounding said estimate
to a lower precision; computing the residual of said rounded
estimate; using a Taylor Expansion to compute the polyno-
mial in said residual of said estimate to obtain the residual
error; and multiplying said rounded estimate by said residual
error and adding the result to said rounded estimate.

Another aspect of the present invention provides an appa-
ratus for calculating the reciprocal square root of a number,
comprising: an arrangement for forming a piecewise-linear
estimate for the reciprocal square root of a number; an
arrangement for rounding said estimate to a lower precision;
an arrangement for computing the residual of said rounded
estimate; an arrangement for using a Taylor Expansion to
compute the polynomial in said residual of said estimate to
obtain the residual error; and an arrangement for multiplying
said rounded estimate by said residual error and adding the
result to said rounded estimate.

Furthermore, an additional aspect of the present invention
provides A program storage device readable by machine,
tangibly embodying a program of instructions executable by
the machine to perform a method for calculating the recipro-
cal square root of a number, comprising the steps of: forming
apiecewise-linear estimate for the reciprocal square root of a
number; rounding said estimate to a lower precision; com-
puting the residual of said rounded estimate; using a Taylor
Expansion to compute the polynomial in said residual of said
estimate to obtain the residual error; and multiplying said
rounded estimate by said residual error and adding the result
to said rounded estimate.

For a better understanding of the present invention,
together with other and further features and advantages
thereof, reference is made to the following description, taken
in conjunction with the accompanying drawings, and the
scope of the invention will be pointed out in the appended
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow diagram of the PowerPC implementation of
the process for determining the reciprocal square root of the
argument ‘X’.

FIG. 2 is a graph diagram of the values returned for the
piecewise-linear estimate for the reciprocal square root of a
number in the range of 1 to 2 and 2 to 4.

FIG. 3 is a flow diagram of a process involving the deter-
mination of the reciprocal square root in conformity with the
present invention.

FIG. 4 is a more particular flow diagram of a process
involving the determination of the reciprocal square root of 9
in conformity with the present invention.

FIG. 5 depicts a microprocessor suitable for implementing
the process of determining the reciprocal square root in con-
formity with the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

As previously discussed, IBM PowerPC processors all
contain a ‘reciprocal square root estimate’. Referring now to
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FIG. 1, a piecewise-linear estimate for the reciprocal square
root is formed initially. In this implementation of the function,
at S100, the argument is first normalized (multiplied by a
power of 4) into a range of 1<=x<4. Next, at S110, the top five
bits (after the implied leading ‘1°) of the mantissa are used to
index one of two pairs of 32-element tables, depending on
whether x is inthe range ‘1<=x2’ orin the range ‘2<=x4". This
results in slope and offset values ‘m” and ‘c’, respectively,
appropriate for range ‘x’. At S120, The value ‘m*x+c’ is
calculated and, at S130, the exponent is adjusted for the initial
normalization. At S140, to get from this estimate to the
desired result one of two well-known conventional methods is
generally used—the Newton-Raphson Iteration or the Taylor
Series Expansion.

The process of forming a piecewise-linear estimate is
described in S100-S130, is discussed below, and is well
known in the art. See Abromowitz and Stegun, Handbook of
Mathematical Functions, (1964). FIG. 2 illustrates the graph
diagram for the piecewise-linear estimate for the reciprocal
square root of a number in the range of 1 to 2 and 2 to 4. As can
be seen, the process of forming the estimate involves splitting
the region from 1 to 2 into 2(two) sections and the region from
2 to 4 into 2 (two) sections. The process of rounding causes
the graph lines to become staircase progressions instead of
the straight lines depicted in FIG. 2. As discussed above, once
the piecewise-linear estimate is formed, the estimate is usu-
ally adjusted by applying Newton’s Method or performing a
Taylor Expansion.

The Newton-Raphson iteration (also called “Newton’s
Method”) is well known and is discussed in detail in Abro-
mowitz and Stegun, Handbook of Mathematical Functions,
(1964), p. 18, which is hereby incorporated by reference.
Newton’s Method recognizes that the reciprocal square root
of ‘a’ is the solution of the formula a*x*x—1=0. The solution
is derived through a few iterations of the formula. The Taylor
Series is also well known and is also described in particularity
in Abromowitz (p. 15), which is also hereby incorporated by
reference. In the Taylor Series, the estimate ‘x0” of the recip-
rocal square root is adjusted for more accuracy using an error
term ‘e’ as follows. The equation a*x0*x0-1 is solved and a
correction term ‘epr’ is developed solving the equation ‘epr=
(14e)**(=0.5)-1". In the result, ‘x0+(x0*epr), ‘e’ will be
small (less than 2**-13 in the BG/L implementation), so the
first four (4) or so terms of the asymptotic polynomial expan-
sion for ‘epr’ will be sufficient to achieve the desired preci-
sion.

The PowerPC processor defines a ‘floating point multiply-
add’ instruction, which computes ‘a*b+c” for 53-bit—precise
arguments and returns a 53-bit-precise result. Using the
‘floating-point multiply-add instruction’ present in the IBM
PowerPC and similar processors, the intermediate arithmetic
calculation of ‘a*b’ is carried to 106 bits of precision. This
gives extended precision for cases where ‘a*b’ and ‘c’ are
nearly equal in magnitude but of opposite sign. In the case of
the ‘square root” function and the ‘reciprocal function’, this
instruction can provide good accuracy in approximating the
solutions for the equations ‘x*x-a=0" and ‘a*x-1=0. The
merged multiply-add with a result near 0 is apparent from the
formulation, and is exploited to bring the results to full 53-bit
precision.

In determining the ‘reciprocal square root’ of a number, the
Newton-Raphson method uses two multiplications and an
addition. PowerPC rounds the result of this first multiplica-
tion to 53 bits of precision, which upsets the precision of the
final result. As a consequence, in approximately 30% of the
cases, successive Newton-Raphson iterations fail to converge
upon the correct result, instead oscillating between a number
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greater than the correct result and lower then the correct
result. Further, when using the Taylor Expansion, this round-
ing off to 53 bits of precision results in an error term ‘e’ that
is insufficient to correct the approximation error, thus in 20%
of the cases, the Taylor Expansion fails to provide a desired
result.

Referring now to FIG. 3, the process for calculating the
reciprocal square root of a number in accordance with the
present invention is depicted. As was earlier described in
S100 through S130 of FIG. 1, and as further illustrated in FIG.
2, the process depicted in FIG. 3 begins by forming a piece-
wise-linear estimate. At S300, a piecewise-linear estimate for
the reciprocal of the square root of ‘x” is formed by multiply-
ing x by a power 4 into a range of 1<=x<4. The top 5 bits of
the mantissa are used to index one of two pairs of 32-element
tables where the pairs are slope ‘m’ and offset ‘c’. It will be
appreciated that more or less than the top 5 bits of the man-
tissa may be used depending on the microprocessor’s preci-
sion. The values for ‘m” and ‘¢’ are looked up in the appro-
priate table depending on whether 1<=x<2 or 2<=x<4. Next,
in S320, the estimate is rounded/truncated to one half of the
microprocessor’s precision or less than one half. It will be
appreciated that in one preferred embodiment of the invention
the rounding/truncating of step S320 may be performed to a
least one half of the microprocessor’s precision, but, in many
cases may be performed to less than one half. In S340, the
residual is computed by so that the rounded/truncated esti-
mate is multiplied by itself and the result is then multiplied by
the argument ‘x” and 1.0 is subtracted from the product to
obtain the residual error. In S350, the polynomial in the
residual error is computed by using a Taylor Expansion where
the argument value is the residual error calculated in S340. In
S360 the original rounded estimate of S320 is compensated
by adding the extended precision intermediate product (re-
sidual error) of S350 to the original estimate of S320. In
99.9994% of the time, the result is the IEEE-representable
(53-bit) number nearest the infinite precision value for the
reciprocal square root of ‘x’. In the other 0.0006% of the time,
the result is the IEEE-representable (53-bit) number nearest
the infinite precision value for the reciprocal square root of ‘x’
but incorrectly rounded in the least significant bit.

Moving on to FIG. 4, the process for estimating the recip-
rocal square root of 9 is depicted in accordance with the
present invention, assuming a base-10 number system. It
should be appreciated that the invention is applicable to any
number of bases including binary and hexadecimal numbers.
First, at S400, a piecewise-linear estimate for the reciprocal
square root of 9 is obtained by finding the values for A and B
using the equation A+B*9. In the example, the value is
0.3234. Next, at S410, this value is then rounded to two
decimal places to obtain a new estimate of 0.32. At S420, the
calculation is as follows: 0.3200x0.3200=0.1024, 0.1024x
9.000-1.000=-0.07840. At S430, a Taylor Expansion is per-
formed and the polynomial in the residual of —0.07840 is
calculated to the desired number of terms as follows, using the
polynomial equation f(x)=x*(-"2+x*(—16+x*3%12s))) where
x=-0.07840, f(-0.07840)=0.04167. At S440, the result of the
Taylor Expansion is used to compensate the original rounded
piecewise-linear estimation as follows:
0.3200%0.04167+0.3200=0.3333.

As canbe seen from the above discussion, it is apparent that
by rounding off the estimate to half the processor’s floating
point precision or less than half that precision, the ‘multiply’
operation used to square the rounded estimate is exact in that
all the bits that would nominally be dropped when the
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machine rounds the result are zeroes. This results in a more
accurate error factor ‘e’ and provides a more accurate end
result.

Thus, in 99.9994% of test cases, the present invention
results in a desired result. In the remaining 0.0006%, there is
a rounding error in the last significant bit. It will be appreci-
ated that the invention results in a significant improvement
over the 70% accuracy provided by the Newton-Raphson
Method and the 80% accuracy of the Taylor Expansion with-
out rounding.

Finally, FIG. 5 depicts a microprocessor suitable for imple-
menting the process of determining the reciprocal square root
in conformity with the present invention. At 500, the micro-
processor is depicted. At 510, the processor function for cal-
culating the reciprocal square root of a number in conformity
with the present invention is depicted. In one preferred
embodiment of the invention, the microprocessor will be
capable of performing calculations with up to 106 bits of
precision. However, it will be appreciated that the invention
herein is applicable to microprocessors having more or less
than the 106 bits of precision assumed herein.

Set forth in the Appendix hereto is a compiler listing, which
includes source code written in the C computer language that
a programmer would use to instruct a microprocessor or
computer to evaluate the reciprocal square root of a number,
atiming section timing section which shows how many clock
cycles the compiler estimate the program will take, and the
sequence of machine instructions to implement the code. The
material in the Appendix illustrates how the present invention
may be utilized.
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It is to be understood that the present invention, in accor-
dance with at least one preferred embodiment, includes an
arrangement for forming a piecewise-linear estimate for the
reciprocal square root of a number; an arrangement for round-
ing said estimate to a lower precision; an arrangement for
computing the residual of said rounded estimate; an arrange-
ment forusing a Taylor Expansion to compute the polynomial
in said residual of said estimate to obtain the residual error;
and an arrangement for multiplying said rounded estimate by
said residual error and adding the result to said rounded
estimate. Together these elements may be implemented on at
least one general-purpose computer running suitable soft-
ware programs. These may be implemented on at least one
Integrated Circuit or part of at least one Integrated Circuit.
Thus, it is to be understood that the invention may be imple-
mented on hardware, software, or a combination of both.

If not otherwise stated herein, it is to be assumed that all
patents, patent applications, patent publications and other
publications (including web-based publications) mentioned
and cited herein are hereby fully incorporated by reference
herein as if set forth in their entirety herein.

Although illustrative embodiments of the present invention
have been described herein with reference to the accompany-
ing drawings, it is to be understood that the invention is not
limited to those precise embodiments, and that various other
changes and modifications may be affected therein by one
skilled in the art without departing from the scope or spirit of
the invention.

APPENDIX

VisualAge C++ for Linux on pSeries, Version 6.0.0.0 --- tenrootc.c
07/30/2003 11:41:05 AM (C)

>>>>> SOURCE SECTION <<<<<

1 I #include <math.h>

2 | double reciprocal__square__root(double x)

319
41 return 1.0/sqrt(x) ;
51}
61
7 | void ten__reciprocal __square__root(double™* f, const double* x)
814
91 doublex0 =x[0] ;
101 doublex1 =x[1];
111 doublex2 =x[2];
121 doublex3 =x[3];
131 double x4 = x[4] ;
141 double x5 = x[5] ;
151 double x6 = x[6] ;
16 | double x7 = x[7] ;
171 double x8 = x[8] ;
18 |  double x9 = x[9] ;
19|  double r0 = 1.0/sqrt(x0) ;
201 doublerl = 1.0/sqrt(x1) ;
211 doubler2 = 1.0/sqrt(x2) ;
221  doubler3 = 1.0/sqrt(x3) ;
23|  double r4 = 1.0/sqrt(x4) ;
241 double r5 = 1.0/sqrt(x5) ;
251 double r6 = 1.0/sqrt(x6) ;
261 double r7 = 1.0/sqrt(x7) ;
271  double r8 = 1.0/sqrt(x8) ;
28 | double 19 = 1.0/sqrt(x9) ;
291 f[0]=
301 f[1]= r1
311 f[2]=12;
321 f[3]=13;
331 fl4]=r4;
341 f[5]=15;
351 f[6]=16;
361 f[71=17;
371 1[8]=18;
381 f[9]1=19;
391}

40 |
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APPENDIX-continued
41 |
** Procedure List for Proc # 1: ten__reciprocal__square_ root End of
Phase 3 **
0: HDR
4: BB_BEGIN 2/ 0
0: PROC fx,g13,gr4
0: DIRCTIV issue__cycle,0
0: LR gri2=grl
0: LI gro=-16
0: DIRCTIV issue_ cycle,1
0: ST4U grl #stack(grl,-80)=grl
0: DIRCTIV issue_ cycle,2
0: SFPLU grl2 #stack(grl 2,gr0,0)=fp31,{p63
0: DIRCTIV issue_ cycle,3
0: SFPLU grl2 #stack(grl 2,gr0,0)=fp30,{p62
0: DIRCTIV issue_ cycle,4
0: SFPLU grl2 #stack(grl 2,gr0,0)=fp29,fp61
0: DIRCTIV issue_ cycle,5
0: SFPLU grl2 #stack(grl 2,gr0,0)=fp28,{p 60
0: FENCE
0: DIRCTIV end_ prologue
0: FENCE
0: DIRCTIV issue__cycle,0
39: DIRCTIV start__epilogue
18: LI gro=72
17: LFL fp13=(*)Cdouble(gr4,64)
0: DIRCTIV issue_ cycle,1
16: LI gr7=56
18: LFL fp45=(*)Cdouble(gr4,gr6,0,trap=72)
0: DIRCTIV issue_ cycle,2
14: LI gr5=40
15: LFL fp3=(*)Cdouble(gr4,48)
0: DIRCTIV issue_ cycle,3
16: LFL fp35=(*)Cdouble(gr4,gr7,0,trap=56)
12: LI gro=24
0: DIRCTIV issue_ cycle,4
19: LA gr8=+CONSTANT_AREA%HI(gr2,0)
13: LFL fpl=(*)Cdouble(gr4,32)
0: DIRCTIV issue_ cycle,5
14: LFL fp33=(*)Cdouble(gr4,gr5,0,trap=40)
27: FPRSQRE p12,1p44=1p13,{p45
0: DIRCTIV issue_ cycle,6
11: LFL fp31=(*)Cdouble(gr4,16)
10: LI gr7=8
0: DIRCTIV issue_ cycle,7
25: FPRSQRE fp11,fp43=1p3,fp35
12: LFL fp63=(*)Cdouble(gr4,gr6,0 trap=24)
0: DIRCTIV issue_ cycle,8
19: LA gr9=+CONSTANT_AREA%LO(gr8,0)
9: LFL fp10=(*)Cdouble(gr4,0)
0: DIRCTIV issue_ cycle,9
23: FPRSQRE p9,fp41=1p1,1p33
10: LFL fp42=(*)Cdouble(grd,gr7,0 trap=8)
0: DIRCTIV issue_ cycle,10
27: FPMUL fp4,fp36=p12,p44,fp12,p44 for
19: LFPS p8,fp40=+CONSTANT__AREA(gr9,g16,0 trap=24)
0: DIRCTIV issue_cycle,11
19: LI gr@=32
21: FPRSQRE p7,p39=1p31,fp63
0: DIRCTIV issue_cycle,12
25: FPMUL p2,fp34=1p11,p43,fp11,fp43,fer
19: LFS fp30=+CONSTANT__AREA(gr9,4)
0: DIRCTIV issue_ cycle,13
19: FPRSQRE p6,fp38=1p10,fp42
19: LFPS p29,fp61=+CONSTANT_AREA(gr9,gr8,0,trap=32)
0: DIRCTIV issue_ cycle,14
23: FPMUL fp0,fp32=)9,p41,{p9,fp41 fer
19: LFPS p28,fp60=+CONSTANT_AREA(gr9,gr5,0,trap=40)
0: DIRCTIV issue_ cycle,15
19: LI gr4=48
27: FPMADD p4,fp36=1p8,fp40,fp13,fp45,1p4,fp36,fcr
0: DIRCTIV issue_cycle,16
19: LFPS p35,fp37=+CONSTANT_AREA(gr9,gr4,0 trap=48)
21: FPMUL fp13,fp45=p7,p39,p7,p39,fer
0: DIRCTIV issue_cycle,17
25: FPMADD fp3,fp35=H)8,p40,p3,fp35,1p2,{p34,fer
38: LI gro=72
0: DIRCTIV issue_ cycle,18
19: FPMUL fp2,fp34=16,p38,{p6,p 38 fer

39: LI gr0=16
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APPENDIX-continued

39:

fp63,

38:

Cr|

32:

DIRCTIV
FPMADD
LR
DIRCTIV
FXPMADD
LI
DIRCTIV
FPMADD
DIRCTIV
FXPMADD
DIRCTIV
FPMADD
DIRCTIV
FXPMADD
DIRCTIV
FPMADD
DIRCTIV
FXPMADD
DIRCTIV
FPMADD
DIRCTIV
FXPMADD
DIRCTIV
FPMADD
DIRCTIV
FPMADD
DIRCTIV
FPMADD
DIRCTIV
FPMADD
DIRCTIV
FPMADD
DIRCTIV
FPMADD
DIRCTIV
FPMUL
LFPLU
DIRCTIV
FPMADD
LFPLU
DIRCTIV
FPMUL
DIRCTIV
FPMADD
DIRCTIV
FPMUL
DIRCTIV
FPMADD
LFPLU
DIRCTIV
FPMUL
DIRCTIV
FPMADD
DIRCTIV
FPMUL
LFPLU
DIRCTIV
FPMADD
Al
DIRCTIV
CONSUME
[234],fsr,fer,ctr
STFL
LI
DIRCTIV
FPMADD
STFL
DIRCTIV
STFL
LI
DIRCTIV
STFL
DIRCTIV
FPMADD
STFL
DIRCTIV
STFL
DIRCTIV
STFL
DIRCTIV

issue_ cycle,19
fp1,fp33=H8,p40,fp1,fp33,{p0,{p32,fer
gri2=grl

issue_ cycle,20
fp0,fp32=129,fp61,p4,fp36,{p30,fp30,fer
gr7=56

issue_cycle,21
fp31,fp63=1p8,{p40,p31,p63,{p13,fp45,for
issue_ cycle,22
fp13,fp45=1p29,{p61,H3,1p35,{p30,fp30,fcr
issue_ cycle,23
fp8,fp40=H)8,p40,{p10,p42,1p2,fp34,fer
issue_ cycle,24
fp2,fp34=129,fp61,p1,fp33,{p30,30,fer
issue_ cycle,25
fp10,fp42=1p28,{p60,HH4,p36,{p0,p 32, for
issue_ cycle,26
fp0,fp32=129,p61,p31,p63,{p30,fp30,fcr
issue_cycle,27
fp13,fp45=1p28,{p60,H3,p35,{p13,p45,for
issue_ cycle,28
fp30,fp62=1p29,{p61,H8,{p40,{p30,fp30,fcr
issue_ cycle,29
fp2,fp34=1)28,p60,ip1,p33,{p2,fp34,fer
issue_ cycle,30
fp10,fp42=1p5,1p37,p4,fp36,{p 10,42 for
issue_cycle,31
fp0,fp32=1)28,{p60,H31,{p63,{p0,p32,for
issue_ cycle,32
fp13,fp45=1p5,p37,3,fp35,{p 13,45 for
issue_ cycle,33
fp30,fp62=1p28,{p60,H8,1p40,{p30,fp62,for
issue_ cycle,34
fp2,fp34=H5,1p37,fp1,fp33,1p2,{p34, fer
issue_ cycle,35
fp4,fp36=HH4,p36,fp10,p42,for
fp28,fp60,gr1 2=#stack(grl 2,gr0,0)

issue_ cycle,36
fp0,fp32=5,ip37,fp31,p63,{p0,p32,fer
fp29,fp61,gr12=#stack(grl 2,gr0,0)

issue_ cycle,37
fp3,fp35=3,p35,fp13,p45,for

issue_ cycle,38
fp5,fp37=5,p37,{p8,p40,p30,p62,fer
issue_ cycle,39
fp1,fp33=p1,p33,{p2,fp34,fer

issue_ cycle,40
fp2,fp34=12,1p44,p12,p44,fp4,p 36 for
fp30,fp62,gr1 2=#stack(grl 2,g10,0)
issue_cycle,41
fp0,fp32=)31,p63,p0,fp32,for

issue_ cycle,42
fp3,fp35=p11,1p43,p11,p43,{p3,Hp35,for
issue_ cycle,43
fp4,fp36=1H)8,p40,p5,Hp37 for
fp31,fp63,gr12=#stack(grl 2,gr0,0)

issue_ cycle,44
fp1,fp33=H)9,1p41,{p9,fp41,1p1,{p33,fer
grl=grl,80,gr12

issue_ cycle,45
grl,gr2,lr,grl4-gr3l,fpl4-p31,1p46-

(*)double(gr3,gr6,0,trap=72)=fp34
gro=24

issue_ cycle,46
fp0,fp32=7,p39,{p7,fp39,p0,{p32,fer
(*)double(gr3,64)=p2

issue_ cycle,47
(*)double(gr3,gr7,0,trap=56)=fp35
gr7=8

issue_ cycle,48

(*)double(gr3,48)=p3

issue_ cycle,49
fp2,fp34=16,1p38,{p6,fp38,p4,{p36,fer
(*)double(gr3,gr5,0,trap=40)=fp33
issue_ cycle,50

(*)double(gr3,32)=fpl

issue_cycle,51
(*)double(gr3,gr6,0,trap=24)=fp32
issue_ cycle,52



US 8,156,170 B2

11
APPENDIX-continued
31: STFL (*)double(gr3,16)=fp0
0: DIRCTIV issue_ cycle,54
30: STFL (*)double(gr3,gr7,0,trap=8)=fp34
0: DIRCTIV issue_ cycle,55
29: STFL (*)double(gr3,0)=1p2
39: BAIr
4: BB_END
5: BB_ BEGIN 3/ 0
39: PEND
5: BB_END

** End of Procedure List for Proc#  1:ten_ reciprocal square_root End
of Phase 3 **

** Procedure List for Proc#  2: reciprocal__square_ root End of Phase 3
K3k

0: HDR

4 BB_BEGIN 2/ 0

0: PROC x,ipl

0: FENCE

0: DIRCTIV end_ prologue

0: FENCE

0: DIRCTIV issue__cycle,0

5: DIRCTIV start__epilogue

4 FRSQRE fpO=fpl

4 LA gr3=+CONSTANT_AREA%HI(gr2,0)

0: DIRCTIV issue_ cycle,1

4 LA gr3=+CONSTANT_AREA%LO(gr3,0)

0: DIRCTIV issue_ cycle,2

4 LFS fp2=+CONSTANT_AREA(gr3,0)

0: DIRCTIV issue_ cycle,3

4 LFS fp4=+CONSTANT_AREA(gr3.4)

0: DIRCTIV issue_ cycle,4

4 LFS fp3=+CONSTANT_AREA(gr3,8)

0: DIRCTIV issue_ cycle,5

4: MFL fp5=1p0,p0,fer

4 LFS fp6=+CONSTANT__AREA(gr3,12)

0: DIRCTIV issue_ cycle,6

4 LFS fp7=+CONSTANT_AREA(gr3,16)

0: DIRCTIV issue_ cycle,10

4: FMA fpl=tp2,ipl,fp5,for

0: DIRCTIV issue_ cycle,15

4: FMA fp2=1p3,ip1,fp4,for

0: DIRCTIV issue_ cycle,20

4: FMA fp2=1p6,ip1,fp2,for

0: DIRCTIV issue_ cycle,25

4: FMA fp2=1p7,fp1,p2,for

0: DIRCTIV issue_ cycle,30

4: MFL fpl=tpl,fp2,fer

0: DIRCTIV issue_ cycle,35

4: FMA fp1=1p0,p0,fp1,for

0: DIRCTIV issue_ cycle,36

5: CONSUME grl,gr2,lr,grl4-gr3l,fpl,fpl4-fp31,fp46-
fp63,cr[234],fsr,fer,ctr

5t BA Ir

4 BB_END

3: BB_BEGIN 3/ 0

3: PEND

3: BB_END

** End of Procedure List for Proc#  2: reciprocal__square_ root End of
Phase 3 **

GPR’s set/used: SSULL SSSS §8-- §--= ==== === —=== ===
FPR’s set/used: SSSS SSSS §SSS S5~ SSSS
SSSS SSSS SSSS §§-- =--- === === $sS8
CCR’s set/used:  ---- -—--
| 000000 PDEF
ten_ reciprocal square_ root
0l PROC f,x,gr3,0r4
01 000000 ori 602C0000 1 LR grl2=grl
01 000004 addi 3800FFF0 1 LI gr0=-16
01 000008 stwu 9421FFBO 1 ST4U grl #stack(grl,-80)=grl
01 00000C stfpdux 7FECO7DC 1  SFPLU
grl 2 #stack(grl 2,gr0,0)=)31,{p63
01 000010 stfpdux 7FCCO7DC 1  SFPLU
grl 2 #stack(grl 2,gr0,0)=H30,fp62
01 000014 stfpdux 7FACO7DC 1 SFPLU

grl 2 #stack(grl 2,gr0,0)=p29,fp61
01 000018 stfpdux 7FRCO7DC 1  SFPLU
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grl 2 #stack(grl 2,gr0,0)=28 fp60

18] 00001C addi 38C00048 1 LI

171 000020 Ifd C9A40040 1 LFL

161 000024 addi 38E00038 1 LI

18] 000028 Ifsdx 7DA4319C 1 LFL
fp45=(*)Cdouble(gr4,gr6,0,trap=72)

141 00002C addi 38A00028 1 LI

151 000030 Ifd C8640030 1 LFL

161 000034 Ifsdx 7C64399C 1 LFL
fp35=(*)Cdouble(gr4,gr7,0,trap=56)

121 000038 addi 38C00018 1 LI

191 00003C addis 3D000000 1 LA
gr8=+CONSTANT_AREA%HI(gr2,0)

131 000040 Ifd C8240020 1 LFL

141 000044 Ifsdx 7C24299C 1 LFL
fp33=(*)Cdouble(gr4,gr5,0,trap=40)

271 000048 fprsqrte 0180681E 1 FPRSQRE

111 00004C Ifd CBE40010 1 LFL

101 000050 addi 38E00008 1 LI

251 000054 fprsqrte 0160181E 1 FPRSQRE

121 000058 Ifsdx 7FE4319C 1 LFL
fp63=(*)Cdouble(gr4,gr6,0,trap=24)

191 00005C addi 39280000 1 LA
gr9=+CONSTANT_AREA%LO(gr8,0)

91 000060 1fd C9440000 1 LFL

231 000064 fprsqrte 0120081E 1 FPRSQRE

101 000068 Ifsdx 7D44399C 1 LFL
fp42=(*)Cdouble(gr4,gr7,0,trap=8)

271 00006C fpmul 008C0310 1  FPMUL
fp4,fp36=1p12,1p44,fp12,fp44 for

191 000070 Ifpsx 7D09331C 1 LFPS
p8,fp40=+CONSTANT__AREA(gr9,gr6,0,trap=24)

191 000074 addi 39000020 1 LI

211000078 fprsqrte O0EOFS81E 1 FPRSQRE

251 00007C fpmul 004B02D0 1 FPMUL
p2,fp34=1p11,p43,fp11,p43 for

191 000080 Ifs C3C90004 1 LFS
fp30=+CONSTANT_AREA(gr9,4)

191 000084 fprsqrte 00CO501E 1  FPRSQRE

191 000088 Ifpsx 7FA9431C 1 LFPS
29,fp61=+CONSTANT__AREA(gr9,gr8,0,trap=32)

231 00008C fpmul 00090250 1  FPMUL
fp0,fp32=p9,1p41,{p9,p41 for

191 000090 Ifpsx 7F892B1IC 1 LFPS
28,fp60=+CONSTANT__AREA(gr9,gr5,0,trap=40)

191 000094 addi 38800030 1 LI

271 000098 fpmadd 008D4120 1 FPMADD
fp4,fp36=1p8,1p40,{p13,5p45,1p4,fp36,fer

191 00009C lfpsx 7CA9231C 1 LFPS
p3,fp37=+CONSTANT__AREA(gr9,gr4,0,trap=48)

211 0000A0 fpmul 01A701D0O 1 FPMUL
fp13,fp45=p7,p39,p7,H39,fcr

251 0000A4 fpmadd 006340A0 1 FPMADD
p3,fp35=1p8,1p40,{p3,fp35,1p2,{p34, fer

38/ 0000A8 addi 38C00048 1 LI

191 0000AC fpmul 00460190 1  FPMUL
fp2,fp34=1p6,1p38,{p6,Hp38, for

391 0000BO addi 38000010 1 LI

231 0000B4 fpmadd 00214020 1 FPMADD
fp1,fp33=(p8,1p40,{p1,fp33,{p0,{p32,fer

391 0000B8 ori 602C0000 1 LR

271 0000BC fxcpmadd 001EE924 1 FXPMADD
fp0,fp32=1p29,1p61,1p4,H36,fp30,p30,fer

361 0000CO addi 38E00038 1 LI

211 0000C4 fpmadd 03FF4360 1 FPMADD
fp31,fp63=1p8,{p40,1p31,fp63,{p13,Hp45 for

251 0000C8 fxcpmadd O01IBEES8E4 1 FXPMADD
fp13,fp45=1p29,{p61,Hp3,fp35,{p30,H30,fer

191 0000CC fpmadd 010A40A0 1 FPMADD
fp8,fp40=1p8,1p40,{p10,Hp42,1p2,fp34,fer

231 0000DO0 fxcpmadd 005EE864 1 FXPMADD
p2,fp34=1p29,1p61,1p1,533,p30,H30,fcr

271 0000D4 fpmadd 0144E020 1 FPMADD
fp10,fp42=1p28,{p60,p4,fp36,{p0,Hp32,fer

211 0000D8 fxcpmadd 001EEFE4 1 FXPMADD
fp0,fp32=1p29,1p61,1p31,fp63,{p30,H30,for

251 0000DC fpmadd 01A3E360 1 FPMADD
fp13,fp45=1p28,{p60,p3,fp35,ip13,Hp45 for

191 0000EO fxcpmadd 03DEEA24 1 FXPMADD

gr6=72
fp13=(*)Cdouble(gr4,64)
gr7=56

gr5=40
fp3=(*)Cdouble(gr4,48)

er6=24

fp1=(*)Cdouble(gr4,32)

p12,fp44=1p13,fp45
31=(*)Cdouble(gr4,16)
gr7=8
p11,{p43=1p3,1p35

fp10=(*)Cdouble(gr4,0)
$9,fp41=1p1,p33

gr8=32
7,fp39=1p31,563

1p6,fp38=1p10,5p42

erd=48

gr6=72

gr0=16

grl2=grl

gr7=56

14
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fp30,fp62=1p29,{p61,HH8,fp40,{p30,H30,fer

231 0000E4 fpmadd 0041E0A0
p2,fp34=1p28,1p60,ip1,H33,1p2,fp34,fer
271 0000E8 fpmadd 01442AA0
fp10,fp42=1p5,1p37,1p4,536,fp 10,42, fer
211 0000EC fpmadd 001FE020
fp0,fp32=1p28,1p60,1p31,fp63,{p0,Hp32,fer
251 0000F0 fpmadd 01A32B60
fp13,fp45=1p5,p37,1p3,H35,fp13,p45,fer
191 0000F4 fpmadd 03C8E7A0
fp30,fp62=1p28,{p 60, 8,fp40,{p30,Hp 62, for
231 0000F8 fpmadd 004128 A0
p2,fp34=1p5,1p37,p1,p33,1p2,{p34, fer
271 0000FC fpmul 00840290
fp4,fp36=p4,1p36,fp10,Hp42 for
391 000100 lfpdux 7FRC0O3DC
fp28,fp60,gr1 2=#stack(grl2,gr0,0)
211000104 fpmadd 001F2820
fp0,fp32=1p5,p37,fp31,H63,1p0,{p32,fer
391 000108 lfpdux 7FACO3DC
p29,fp61,gr12=#stack(grl2,gr0,0)
251 00010C fpmul 00630350
fp3,fp35=1p3,1p35,fp13,Hp45 for
191 000110 fpmadd 00A82FA0
fp5,fp37=1p5,p37,p8,p40,fp30,{p62, fer
231000114 fpmul 00210090
fp1,fp33=1p1,1p33,{p2,H34,for
271000118 fpmadd 004C6120
1p2,fp34=1p12,1p44,1p12,p44,fp4, 36, fer
391 00011C lfpdux 7FCCO3DC
fp30,fp62,gr12=#stack(grl2,gr0,0)
211000120 fpmul 001F0010
fp0,fp32=p31,{p63,1p0,H32,fer
251000124 fpmadd 006B58E0
fp3,fp35=1p11,1p43,fp11,5p43,p3,H35,fer
191 000128 fpmul 00880150
fp4,fp36=p8,1p40,{p5,p37 for
391 00012C lfpdux 7FEC03DC
fp31,1p63,gr12=#stack(grl2,gr0,0)
231000130 fpmadd 00294860
fp1,fp33=p9,1p41,p9,fp41,1p1,{p33, fer
391 000134 addi 38210050
381 000138 stfsdx 7C43359C
(*)double(gr3,gr6,0,trap=72)=fp34
321 00013C addi 38C00018
211000140 fpmadd 00073820
fp0,fp32=1p7,1p39,{p7,fp39,p0,{p32,fer
371000144 stfd D8430040
361 000148 stfsdx 7C633D9C
(*)double(gr3,gr7,0,trap=56)=fp35
301 00014C addi 38E00008
351000150 stfd D8630030
191 000154 fpmadd 00463120
p2,fp34=1p6,1p38,p6,fp38,p4,{p36,fer
341 000158 stfsdx 7C232D9C
(*)double(gr3,gr5,0,trap=40)=fp33
331 00015C stfd D8230020
321000160 stfsdx 7C03359C
(*)double(gr3,gr6,0,trap=24)=fp32
311000164 stfd D8030010
301 000168 stfsdx 7C433D9C
(*)double(gr3,gr7,0,trap=8)=p34
291 00016C stfd D8430000
391000170 belr 4E800020

1

0

| Instruction count
GPR’s set/used: C S mmm mmm mmmm o o e e
FPR’s set/used: SSSS SSSS ==== ==== === —mem —mem emee

FPMADD

FPMADD

FPMADD

FPMADD

FPMADD

FPMADD

FPMUL

LFPLU

FPMADD

LFPLU

FPMUL

FPMADD

FPMUL

FPMADD

LFPLU

FPMUL

FPMADD

FPMUL

LFPLU

FPMADD

Al
STFL

LI
FPMADD

STFL
STFL

LI

STFL
FPMADD
STFL

STFL
STFL

STFL
STFL

CCR’s set/used:  ---- --—-

| 000000
ol
41 000174 frsqrte FC000834
41 000178 addis 3C600000
g13=+CONSTANT_AREA%HI(gr2,0)
41 00017C addi 38630000
gr3=+CONSTANT _AREA%LO(gr3,0)
41 000180 fs C0430000

fp2=+CONSTANT AREA(gr3,0)
41 000184 Ifs C0830004

LFS

LFS

grl=grl,80,gr12

g16=24

(*)double(gr3,64)=1p2

gr7=8

(*)double(gr3,48)=1p3

(*)double(gr3,32)=ip1

(*)double(gr3,16)=1p0

(*)double(gr3,0)=1p2
Ir
93

reciprocal__square_ root
x,ipl
pO=fp1

16
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18

fp4=+CONSTANT _AREA(gr34)

4] 000188 Ifs C0630008 1 LFS
fp3=+CONSTANT__AREA(gr3,8)
4] 00018C fmul FCA00032 1 MFL p5=p0,p0,fer
4] 000190 Ifs C0C3000C 1 LFS
fp6=+CONSTANT__AREA(gr3,12)
4] 000194 Ifs COE30010 1 LFS
fp7=+CONSTANT__AREA(gr3,16)
4] 000198 fmadd FC21117A 2 FMA pl=p2,ip1,p3,fer
4] 00019C fmadd FC41193A 4 FMA p2=1p3,fp1,{p4,fer
4] 0001 A0 fimadd FC4130BA 4 FMA p2=p6,ip1,{p2,fer
4| 0001 A4 fimadd FC4138BA 4 FMA p2=p7,fp1,{p2,fer
4] 0001 A8 fimul FC2100B2 4 MFL pl=fp1,{p2,fer
4] 0001 AC fmadd FC20007A 4 FMA p1=p0,0,fp1,fer
51 0001BO belr 4E800020 0 BAIlr
| Instruction count 16
| Constant Area
| 000000 BF800000 3E8C0O000 BEAOOOOO 3EC00000 BFO0O0000
49424D20
| 000018 BF800000 BF800000 BEA0O00O BEAOOO00 3EC00000
3EC00000
| 000030 BF000000 BFO00000

What is claimed is:

1. A method for calculating the reciprocal square root of a
number in a computing device comprising a processor having
an embedded program for executing a reciprocal square root
estimate operation, the reciprocal square root estimate opera-
tion comprising the steps of:

using the processor to form a piecewise-linear estimate for

the reciprocal square root of a number;

using the processor to round said estimate to a lower pre-

cision;

using the processor to compute the residual of said rounded

estimate;

using the processor to utilize a Taylor Expansion to com-

pute the polynomial in said residual of said estimate to
obtain the residual error; and

using the processor to multiply said rounded estimate by

said residual error and adding the result to said rounded
estimate.

2. The method of claim 1, said estimate is rounded to one
half the number of digits sought for the final result.

3. The method of claim 1, wherein said estimate is rounded
to less than one half of the number of digits sought for the final
result.

4. An apparatus for calculating the reciprocal square root of
a number, comprising:

one or More processors;

a memory in operative connection with the one or more

processors;

wherein, responsive to execution of program instructions

accessible to the one or more processors, the one or more
processors are configured to:

25

35

40

45
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form a piecewise-linear estimate for the reciprocal square

root of a number;

round said estimate to a lower precision;

compute the residual of said rounded estimate;

use a Taylor Expansion to compute the polynomial in said

residual of said estimate to obtain the residual error; and
multiply said rounded estimate by said residual error and
adding the result to said rounded estimate.

5. The apparatus of claim 4, wherein said estimate is
rounded to one half the number of digits sought for the final
result.

6. The apparatus of claim 4, wherein the said estimate is
rounded to less than one half the number of digits sought for
the final result.

7. A non-transitory program storage device readable by
machine, tangibly embodying a program of instructions
executable by the machine to perform a method for calculat-
ing the reciprocal square root of a number, comprising the
steps of:

forming a piecewise-linear estimate for the reciprocal

square root of a number;

rounding said estimate to a lower precision;

computing the residual of said rounded estimate;

using a Taylor Expansion to compute the polynomial in

said residual of said estimate to obtain the residual error;
and

multiplying said rounded estimate by said residual error

and adding the result to said rounded estimate.

8. The program storage device of claim 7, wherein said
estimate is rounded to one half the number of digits sought for
the final result.

9. The program storage device of claim 7, wherein said
estimate is rounded to less than one half the number of digits
sought for the final result.

#* #* #* #* #*



